在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0.4),以点A为旋转中心

为什么b=4... 为什么b=4 展开
nhnyu
2013-04-07 · TA获得超过1136个赞
知道答主
回答量:77
采纳率:50%
帮助的人:36万
展开全部
在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0.4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转角为α.∠ABO为β.
(I )如图①,当旋转后点D恰好落在AB边上时,求点D的坐标;
(II)如图②,当旋转后满足BC∥x轴时,求α与β之间的数量关系:
(III)当旋转后满足∠AOD=β时,求直线CD的解析式(直接写出结果即可).

解:(1)∵点A(3,0),B(0,4),得OA=3,OB=4,
∴在Rt△AOB中,由勾股定理,得AB=√(OA^2+OB^2)=5,
根据题意,有DA=OA=3.
如图①,过点D作DM⊥x轴于点M,
则MD∥OB,
∴△ADM∽△ABO.有 AD/AB=AM/AO=DM/BO,
得 AM=AD/AB•AO=3/5×3=9/5,
∴OM= 6/5,
∴ MD=12/5,
∴点D的坐标为( 6/5, 12/5).
(2)如图②,由已知,得∠CAB=α,AC=AB,
∴∠ABC=∠ACB,
∴在△ABC中,
∴α=180°-2∠ABC,
∵BC∥x轴,得∠OBC=90°,
∴∠ABC=90°-∠ABO=90°-β,
∴α=2β;
(3)若顺时针旋转,如图,过点D作DE⊥OA于E,过点C作CF⊥OA于F,
∵∠AOD=∠ABO=β,
∴tan∠AOD=DE/OE=tan∠ABO= 3/4,
设DE=3x,OE=4x,
则AE=3-4x,
在Rt△ADE中,AD^2=AE^2+DE^2,
∴9=9x^2+(3-4x)^2,
∴x= 24/25,
∴D( 96/25, 72/25),
∴直线AD的解析式为:y= 24/7x- 72/7,
∵直线CD与直线AD垂直,且过点D,
∴设y=- 7/24x+b,
则b=4,
∴直线CD的解析式为y=- 7/24x+4,
若逆时针旋转,则可得直线CD的解析式为y= 7/24x-4.
∴直线CD的解析式为y=- 7/24x+4或y= 7/24x-4
xuan_sherry
2012-05-27 · 超过22用户采纳过TA的回答
知道答主
回答量:98
采纳率:0%
帮助的人:63.4万
展开全部
问题问完了?请完善
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
e12wb
2012-06-05 · 贡献了超过115个回答
知道答主
回答量:115
采纳率:0%
帮助的人:25.1万
展开全部
你得出来的b指的是什么
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式