分式方程有增根如何求
展开全部
在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。
如果一个分式方程的根能使此方程的公分母为零,那么这个根就是原方程的增根。
增根的产生的原因:
对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。
分式方程两边都乘以最简公分母化分式方程为整式方程,这时未知数的允许值扩大,因此解分式方程容易发生増根。
例如:
设方程
a(x)=0
是由方程
b(x)=0
变形得来的,如果这两个方程的根完全相同(包括重数),那么称这两个方程等价.如果
x=a
是方程
a(x)=0
的根但不是b(x)=0
的根,称
x=a
是方程的增根;如果x=b
是方程b(x)=0
的根但不是a(x)=0
的根,称x=b
是方程b(x)=0
的失根.
如果一个分式方程的根能使此方程的公分母为零,那么这个根就是原方程的增根。
增根的产生的原因:
对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。
分式方程两边都乘以最简公分母化分式方程为整式方程,这时未知数的允许值扩大,因此解分式方程容易发生増根。
例如:
设方程
a(x)=0
是由方程
b(x)=0
变形得来的,如果这两个方程的根完全相同(包括重数),那么称这两个方程等价.如果
x=a
是方程
a(x)=0
的根但不是b(x)=0
的根,称
x=a
是方程的增根;如果x=b
是方程b(x)=0
的根但不是a(x)=0
的根,称x=b
是方程b(x)=0
的失根.
展开全部
希望能帮到你!
增根:在分式方程去分母时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。
分析:因为解分式方程时可能产生增根,所以解分式方程必须检验.
检验方法:
(1)检验是否增根的方法:
通常把求得的根代入去分母后的最简公分母中,看它的值是否为0,使最简公分母为0的根是原方程的增根,必须舍去.使最简公分母不为零的根就是原方程的根。(这一个检验是必须写到解方程步骤里面的,必要的步骤)
(2)检验你解得方程的是否正确,把未知数的值代入方程的左、右两边,看看左右两边是否相等。
增根:在分式方程去分母时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。
分析:因为解分式方程时可能产生增根,所以解分式方程必须检验.
检验方法:
(1)检验是否增根的方法:
通常把求得的根代入去分母后的最简公分母中,看它的值是否为0,使最简公分母为0的根是原方程的增根,必须舍去.使最简公分母不为零的根就是原方程的根。(这一个检验是必须写到解方程步骤里面的,必要的步骤)
(2)检验你解得方程的是否正确,把未知数的值代入方程的左、右两边,看看左右两边是否相等。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
分式方程出现增根
这个根舍去
不是方程的解
如果这个方程没有其他的解
这个方程无解。
分式方程出现增根
这个根舍去
不是方程的解
如果这个方程没有其他的解
这个方程无解。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询