直线方程与x轴垂直或与y轴垂直分别代表什么?
垂直于X轴,斜率不存在。垂直于Y轴,斜率等于0。
直线对X 轴的倾斜角α的正切值tgα称为该直线的“斜率”,并记作k,k=tgα。规定平行于X轴的直线的斜率为零,平行于Y轴的直线的斜率不存在。对于过两个已知点(x1,y1) 和 (x2,y2)的直线,若x1≠x2,则该直线的斜率为k=(y1-y2)/(x1-x2)。
扩展资料:
从实际意义看,斜率就是我们所说的坡度,是高度的平均变化率,用坡度来刻划道路的倾斜程度,也就是用坡面的切直高度和水平长度的比,相当于在水平方向移动一千米,在切直方向上升或下降的数值,这个比值实际上就表示了坡度的大小。
其次,从倾斜角的正切值来看;还有就是从向量看,是直线向上方向的向量 与X轴方向上的单位向量的夹角;最后是从导数这个视角来再次认识斜率的概念,这里实际上就是直线的瞬时变化率。
曲线的上某点的斜率则反映了此曲线的变量在此点处的变化的快慢程度。
曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
f'(x)>0时,函数在该区间内单调递增,曲线呈向上的趋势;f'(x)<0时,函数在该区间内单调减,曲线呈向下的趋势。
在(a,b)f''(x)<0时,函数在该区间内的图形是凸(从上向下看)的;f''(x)>0时,函数在该区间内的图形是凹的。
垂直于X轴,斜率不存在。垂直于Y轴,斜率等于0。
直线方程的一般式:Ax + By + C = 0 (A≠0 && B≠0)【适用于所有直线】。
斜率是指一条直线与平面直角坐标系横轴正半轴方向的夹角的正切值,即该直线相对于该坐标系的斜率, 一般式公式:k = -A/B。
横截距是指一条直线与横轴相交的点(a,0)与原点的距离,一般式的公式:a = -C/A。
纵截距是指一条直线与纵轴相交的点(0,b)与原点的距离,一般式的公式:b = -C/B。
扩展资料
直线斜率相关
当直线L的斜率不存在时,斜截式y=kx+b 当k=0时 y=b
当直线L的斜率存在时,点斜式y2—y1=k(X2—X1),
当直线L在两坐标轴上存在非零截距时,有截距式X/a+y/b=1
对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα
斜率计算:ax+by+c=0中,k=-a/b.
直线方程与y轴垂直,说明倾斜角等于0°,一般方程为y=c(c为常数)。
与x轴垂直的直线方程代表直线上x的值不变,对应的直线方程为:By=C,简化为y=k,k为常数
与y轴垂直的直线方程代表直线上y的值不变,对应的直线方程为:Ax=C,简化为x=k,k为常数