高二数学导数题一道。求解。谢谢各位啦~

已知函数f(x)=(x^2+ax+2)e^x,(x,a属于R)(1)当a=0时,求函数f(x)的图像在点A(1,f(1))处的切线方程。(2)若f(x)在R上单调,求a取... 已知函数f(x)=(x^2+ax+2)e^x,(x,a属于R)
(1)当a=0时,求函数f(x)的图像在点A(1,f(1)) 处的切线方程。
(2)若f(x)在R上单调,求a取值范围。
(3)当a=-5/2时,求函数f(x)的极小值。
展开
laoye20011
2012-05-27 · TA获得超过5558个赞
知道大有可为答主
回答量:1118
采纳率:100%
帮助的人:536万
展开全部
解:
(1) a=0,f(x) = (x²+2)*e^x
f'(x) = 2x*e^x+(x²+2)*e^x = (x²+2x+2)*e^x
因此:
f(1) = 3e;f'(1) = 5e,即切线斜率为 5e
切线方程为;
y - 3e = 5e(x-1) ==> y =5e *x -2e
(2) f'(x) = (2x+a)*e^x+(x²+ax+2)*e^x = [x²+(a+2)x+(a+2)]*e^x
f(x) 在R上单调,则恒有 f'(x)≥0 或者 恒有f'(x)≤0
∵ e^x >0,且 x²+(a+2)x+(a+2) >0 必有解
∴ 不能满足任意x,f'(x)≤0
若 x²+(a+2)x+(a+2) < 0 无解,则可满足任意x,f'(x))≥0
只要:Δ = (a+2)² - 4(a+2)≤0
解得:-2 ≤ a ≤ 2
a的取值范围是 [-2, 2]
(3) 当a=-5/2时:
f'(x) = [x²+(a+2)x+(a+2)]*e^x
= (x² -x/2 - 1/2)*e^x = 1/2*(2x+1)(x-1)e^x
令f'(x) =0, 解得 x1=-1/2,x2=1;
当 x<-1/2 时, f’(x) >0
-1/2 <x<1时,f‘(x) <0
x>1 时,f'(x)>0
因此 x =1为极小值点;
极小值:f(1) = (1+a+2) e = e/2
伤心我便在
2012-05-27 · TA获得超过175个赞
知道小有建树答主
回答量:558
采纳率:19%
帮助的人:154万
展开全部
f(1)=3e f'(1)=5e 所以方程 y-3e=5e(x-1)第二问 f'(x)=x^2+(a+2)+a+2 因为开口向上所以保证Δ<0 -2<a<2三问 零点为1 和-1/2 所以最小值x=-1/2 y=5√e/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式