已知在三角形ABC中,P是BC上一个动点,PQ//BA,PQ与边AB
如图已知在⊿ABC中,P是边BC上的一个动点,PQ//AC,PQ与边AB相交于点Q,AB=AC=10,BC=16,BP=x,⊿APQ的面积为y(1)求y关于x的函数解析式...
如图已知在⊿ABC中,P是边BC上的一个动点,PQ//AC,PQ与边AB相交于点Q,AB=AC=10,BC=16,BP=x, ⊿ APQ的面积为y
(1)求y关于x的函数解析式,并求出它的定义域
(2)探索⊿ APQ与⊿ ABP能否相似?若相似请求出x的值,若不相似请说明理由.(只需第二问)
如图 展开
(1)求y关于x的函数解析式,并求出它的定义域
(2)探索⊿ APQ与⊿ ABP能否相似?若相似请求出x的值,若不相似请说明理由.(只需第二问)
如图 展开
2个回答
展开全部
(1)设AD⊥BC于D,则由AB=AC=10,且BC=16,故AD=6
S△ABC=1/2*AD*BC=48
再设BF⊥AC于F,交PQ于E,
S△ABC=1/2*AC*BF=48 得 BF=48/5
由PQ//AC,得△BPQ∽△BCA
所以有BE:BF=BP:BC
即:BE=BP*BF/BC=x*(48/5)/16=3x/5
同理:PQ:AC=BP:BC
得:PQ=BP*AC/BC=x*10/16=5x/8
故S△BPQ=1/2*BE*PQ=1/2*(3x/5)*(5x/8)=3x²/16
(2)若△APQ∽△ABP,则有∠QPA=∠B=∠C (AB=AC)
又∠QPA=∠PAC,因此有PA=PC=16-x
在△APQ∽△ABP中,有:
AP:AB=PQ:BP
即:(16-x)/10=(5x/8)/x
得:x=39/4
S△ABC=1/2*AD*BC=48
再设BF⊥AC于F,交PQ于E,
S△ABC=1/2*AC*BF=48 得 BF=48/5
由PQ//AC,得△BPQ∽△BCA
所以有BE:BF=BP:BC
即:BE=BP*BF/BC=x*(48/5)/16=3x/5
同理:PQ:AC=BP:BC
得:PQ=BP*AC/BC=x*10/16=5x/8
故S△BPQ=1/2*BE*PQ=1/2*(3x/5)*(5x/8)=3x²/16
(2)若△APQ∽△ABP,则有∠QPA=∠B=∠C (AB=AC)
又∠QPA=∠PAC,因此有PA=PC=16-x
在△APQ∽△ABP中,有:
AP:AB=PQ:BP
即:(16-x)/10=(5x/8)/x
得:x=39/4
追问
即此时BP=x=6
为什么
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询