如图1,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连接EB,过点A作AM垂直于BE,垂足为M
1。说明OE=OF2。如图2若点E作AC的延长线上,AM⊥BE于点M交DB的延长线于点F,其他条件不变,则结论OE=OF还成立吗?请给出证明...
1。 说明OE=OF 2。如图2若点E作AC的延长线上,AM⊥BE于点M交DB的延长线于点F,其他条件不变,则结论OE=OF还成立吗? 请给出证明
展开
5个回答
展开全部
1、因为OB=OA ∠OEB+∠OFM=∠OFA+OFM=∠OFA+∠OAF=180度
所以∠OEB=∠OFA
又因为∠AOF=∠BOE=90度
所以根据角边角定理
推出三角形AOF≌三角形BOE
所以推出OE=OF
2、因为∠CBE+∠ABM=∠ABM+BAF=90度
所以∠CBE=BAF
又因为∠BCE=∠ABF=135度
BC=AB
所以三角形BCE≌三角形ABF
所以CE=BF
又因为OC=OB
所以OC+CE=OB+BF
即OE=OF
得证
所以∠OEB=∠OFA
又因为∠AOF=∠BOE=90度
所以根据角边角定理
推出三角形AOF≌三角形BOE
所以推出OE=OF
2、因为∠CBE+∠ABM=∠ABM+BAF=90度
所以∠CBE=BAF
又因为∠BCE=∠ABF=135度
BC=AB
所以三角形BCE≌三角形ABF
所以CE=BF
又因为OC=OB
所以OC+CE=OB+BF
即OE=OF
得证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵ AM⊥EB
∠AMB=90°,
正方形ABCD中对角线AC、BD相交于O,∠AOB=90°
∠AFO= ∠BFM
∴△BFM∽△ FAO
∴ ∠FAO= ∠FBM
∵AO=BO ∠AOB= ∠BOE
∴△AFO≌△ BOE
∴ OE=OF
2、因为∠CBE+∠ABM=∠ABM+BAF=90度
所以∠CBE=BAF
又因为∠BCE=∠ABF=135度
BC=AB
所以△BCE≌△ABF
所以CE=BF
又因为OC=OB
所以OC+CE=OB+BF
即OE=OF
∠AMB=90°,
正方形ABCD中对角线AC、BD相交于O,∠AOB=90°
∠AFO= ∠BFM
∴△BFM∽△ FAO
∴ ∠FAO= ∠FBM
∵AO=BO ∠AOB= ∠BOE
∴△AFO≌△ BOE
∴ OE=OF
2、因为∠CBE+∠ABM=∠ABM+BAF=90度
所以∠CBE=BAF
又因为∠BCE=∠ABF=135度
BC=AB
所以△BCE≌△ABF
所以CE=BF
又因为OC=OB
所以OC+CE=OB+BF
即OE=OF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
⑴ ∠BAF=90º-∠ABE=∠EBC AB=∠BC ∠ABF=∠BCE﹙=45º﹚
∴⊿ABF≌⊿BCE ﹙ASA﹚ ∴BF=CE OF=OB-BF=OC-CE=OE
⑵CB延长交AF于N ∠BAF=90º-∠ANB=∠MBN=∠CBE AB=BC
∠ABF=∠BCE﹙=135º﹚ ∴⊿ABF≌⊿BCE ﹙ASA﹚ ∴BF=CE
OF=OB+BF=OC+CE=OE
∴⊿ABF≌⊿BCE ﹙ASA﹚ ∴BF=CE OF=OB-BF=OC-CE=OE
⑵CB延长交AF于N ∠BAF=90º-∠ANB=∠MBN=∠CBE AB=BC
∠ABF=∠BCE﹙=135º﹚ ∴⊿ABF≌⊿BCE ﹙ASA﹚ ∴BF=CE
OF=OB+BF=OC+CE=OE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵ AM⊥EB
∠AMB=90°,
正方形ABCD中对角线AC、BD相交于O,∠AOB=90°
∠AFO= ∠BFM
∴△BFM∽△ FAO
∴ ∠FAO= ∠FBM
∵AO=BO ∠AOB= ∠BOE
∴△AFO≌△ BOE
∴ OE=OF
∠AMB=90°,
正方形ABCD中对角线AC、BD相交于O,∠AOB=90°
∠AFO= ∠BFM
∴△BFM∽△ FAO
∴ ∠FAO= ∠FBM
∵AO=BO ∠AOB= ∠BOE
∴△AFO≌△ BOE
∴ OE=OF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询