用初等变换法求逆矩阵 20

第一题:4123215-32第二题:101-120103120-3104第三题:111111-1-11-11-11-1-11麻烦写一下过程,还有这类题有什么技巧吗,谢谢... 第一题:4 1 2
3 2 1
5 -3 2
第二题:1 0 1 -1
2 0 1 0
3 1 2 0
-3 1 0 4
第三题:1 1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1
麻烦写一下过程,还有这类题有什么技巧吗,谢谢
展开
 我来答
lry31383
高粉答主

2012-05-28 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
看看下面的解法, 琢磨一下与你的做法有什么不同,
不同之处或许就是所谓的"技巧"

(1)解: (A,E) =
4 1 2 1 0 0
3 2 1 0 1 0
5 -3 2 0 0 1

r3-r1,r1-2r2
-2 -3 0 1 -2 0
3 2 1 0 1 0
1 -4 0 -1 0 1

r1+2r3,r2-3r3
0 -11 0 -1 -2 2
0 14 1 3 1 -3
1 -4 0 -1 0 1

r1*(-1/11),r2-14r1,r3+4r1
0 1 0 1/11 2/11 -2/11
0 0 1 19/11 -17/11 -5/11
1 0 0 -7/11 8/11 3/11

交换行
1 0 0 -7/11 8/11 3/11
0 1 0 1/11 2/11 -2/11
0 0 1 19/11 -17/11 -5/11

所以 A^-1 =
-7/11 8/11 3/11
1/11 2/11 -2/11
19/11 -17/11 -5/11

(2)解: (A,E) =
1 0 1 -1 1 0 0 0
2 0 1 0 0 1 0 0
3 1 2 0 0 0 1 0
-3 1 0 4 0 0 0 1

r4+r3,r3-r1-r2,r2-2r1
1 0 1 -1 1 0 0 0
0 0 -1 2 -2 1 0 0
0 1 0 1 -1 -1 1 0
0 2 2 4 0 0 1 1

r4-2r3
1 0 1 -1 1 0 0 0
0 0 -1 2 -2 1 0 0
0 1 0 1 -1 -1 1 0
0 0 2 2 2 2 -1 1

r1+r2,r4+2r2
1 0 0 1 -1 1 0 0
0 0 -1 2 -2 1 0 0
0 1 0 1 -1 -1 1 0
0 0 0 6 -2 4 -1 1

r2*(-1),r4*(1/6)
1 0 0 1 -1 1 0 0
0 0 1 -2 2 -1 0 0
0 1 0 1 -1 -1 1 0
0 0 0 1 -2/6 4/6 -1/6 1/6

r1-r4,r2+2r4,r3-r4
1 0 0 0 -2/3 1/3 1/6 -1/6
0 0 1 0 4/3 1/3 -1/3 1/3
0 1 0 0 -2/3 -5/5 7/8 -1/6
0 0 0 1 -1/3 2/3 -1/6 1/6

交换行
1 0 0 0 -2/3 1/3 1/6 -1/6
0 1 0 0 -2/3 -5/5 7/8 -1/6
0 0 1 0 4/3 1/3 -1/3 1/3
0 0 0 1 -1/3 2/3 -1/6 1/6

A^-1 =
-2/3 1/3 1/6 -1/6
-2/3 -5/5 7/8 -1/6
4/3 1/3 -1/3 1/3
-1/3 2/3 -1/6 1/6

(3)解: (A,E) =
1 1 1 1 1 0 0 0
1 1 -1 -1 0 1 0 0
1 -1 1 -1 0 0 1 0
1 -1 -1 1 0 0 0 1

r4-r3,r3-r1,r2-r1
1 1 1 1 1 0 0 0
0 0 -2 -2 -1 1 0 0
0 -2 0 -2 -1 0 1 0
0 0 -2 2 0 0 -1 1

r4-r2
1 1 1 1 1 0 0 0
0 0 -2 -2 -1 1 0 0
0 -2 0 -2 -1 0 1 0
0 0 0 4 1 -1 -1 1

r2*(-1/2),r3*(-1/2),r4*(1/4)
1 1 1 1 1 0 0 0
0 0 1 1 1/2 -1/2 0 0
0 1 0 1 1/2 0 -1/2 0
0 0 0 1 1/4 -1/4 -1/4 1/4

ri-r4,i=2,3,4
1 1 1 0 3/4 1/4 1/4 -1/4
0 0 1 0 1/4 -1/4 1/4 -1/4
0 1 0 0 1/4 1/4 -1/4 -1/4
0 0 0 1 1/4 -1/4 -1/4 1/4

r1-r2-r3
1 0 0 0 1/4 1/4 1/4 1/4
0 0 1 0 1/4 -1/4 1/4 -1/4
0 1 0 0 1/4 1/4 -1/4 -1/4
0 0 0 1 1/4 -1/4 -1/4 1/4

r2<->r3
1 0 0 0 1/4 1/4 1/4 1/4
0 1 0 0 1/4 1/4 -1/4 -1/4
0 0 1 0 1/4 -1/4 1/4 -1/4
0 0 0 1 1/4 -1/4 -1/4 1/4

所以 A^-1 =
1/4 1/4 1/4 1/4
1/4 1/4 -1/4 -1/4
1/4 -1/4 1/4 -1/4
1/4 -1/4 -1/4 1/4
东莞大凡
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于... 点击进入详情页
本回答由东莞大凡提供
X先森说

2015-11-08 · TA获得超过1.4万个赞
知道大有可为答主
回答量:6377
采纳率:82%
帮助的人:685万
展开全部
相似矩阵具有相同的特征值,

那么其对角线元素的加和一定也是相等的,
所以在这里得到

2+0+x=2+1-1
于是解得
x=0
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。收起
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
邰明雨as
高粉答主

2019-09-18 · 繁杂信息太多,你要学会辨别
知道答主
回答量:13.1万
采纳率:7%
帮助的人:6499万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式