已知关于X的一元二次方程2x2+4x+m-2=0有两个非零实数根,甲、乙有这样一段对话

甲说:M的取值范围是小于2的一切实数。乙说:这个方程的两根不可能同为正数或同为负数。(1)你认为甲的说法对吧?为什么(2)你认为乙的说法对吗?若不对,请你求两根同为正数或... 甲说:M的取值范围是小于2的一切实数。
乙说:这个方程的两根不可能同为正数或同为负数。
(1)你认为甲的说法对吧?为什么
(2)你认为乙的说法对吗?若不对,请你求两根同为正数或同为负数时,M的取值范围。
展开
轩辕玄云
2012-05-28 · TA获得超过213个赞
知道小有建树答主
回答量:111
采纳率:0%
帮助的人:92.9万
展开全部
(1)不对,方程2x²+4x+m-2=0有两个非零实数根,则b²-4ac>0且-b±(√b²-4ac)/2a≠0
即16-4×2×(m-2)>0解得m<4;-4+(√8-2m)/2≠0解得m≠-28;-4-(√8-2m)/2=0无意义
(2)不对,两根同为负数时,对于x1 = -4+(√8-2m)/2而言,((√8-2m)/2)<4,得m>-28
对于x2 = -4-(√8-2m)/2而言,(√8-2m)>0即,8-2m>0得m<4 故得-28<m<4,即两根可同为负数
两根同为正数时,对于x1 = -4+(√8-2m)/2而言,((√8-2m)/2)>4,得m<-28
对于x2 = -4-(√8-2m)/2而言,要使x2为整数,(√8-2m)/2必须小于0,故两根不可能同为正数
cheny7308
2012-05-29
知道答主
回答量:5
采纳率:0%
帮助的人:7864
展开全部
(1)同意上面的意见.
(2)可以用韦达定理来判断.x1.x2=(m-2)/2,当2<m<4时,两根同号,根据求根公式可判定必然是同为负数根.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式