设α_1, α_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b
设,〖α_(1,)α〗_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b(b≠0)的一个特解,证明向量组α_1+β,α_...
设,〖α_(1,) α〗_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b(b≠0)的一个特解,证明向量组α_1+β,α_2+β,⋯,α_m+β,β线性无关。“_”是指下标,求解谢谢
设α_1,α_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b(b≠0)的一个特解,证明向量组α_1+β,α_2+β,⋯,α_m+β,β线性无关。 展开
设α_1,α_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b(b≠0)的一个特解,证明向量组α_1+β,α_2+β,⋯,α_m+β,β线性无关。 展开
2个回答
展开全部
证明: 设 k1(α1+β)+k2(α2+β)+⋯+km(αm+β)+kβ = 0
则 k1α1+k2α2+⋯+kmαm+ (k1+k2+...+km+k)β = 0.
等式两边左乘A, 由已知Aαi=0, Aβ=b得
(k1+k2+...+km+k)b = 0
因为 b≠0, 所以 k1+k2+...+km+k = 0
所以 k1α1+k2α2+⋯+kmαm = 0
由于 α1,α2,α3,⋯,αm 线性无关
所以 k1=k2=...=km=0
再由 k1+k2+...+km+k = 0 得 k = 0.
故 向量组α1+β,α2+β,⋯,αm+β,β线性无关.
则 k1α1+k2α2+⋯+kmαm+ (k1+k2+...+km+k)β = 0.
等式两边左乘A, 由已知Aαi=0, Aβ=b得
(k1+k2+...+km+k)b = 0
因为 b≠0, 所以 k1+k2+...+km+k = 0
所以 k1α1+k2α2+⋯+kmαm = 0
由于 α1,α2,α3,⋯,αm 线性无关
所以 k1=k2=...=km=0
再由 k1+k2+...+km+k = 0 得 k = 0.
故 向量组α1+β,α2+β,⋯,αm+β,β线性无关.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询