利用洛必达法则求极限 5

 我来答
匿名用户
2017-11-08
展开全部
y'=ln(x-1)+x/(x-1)y''=1/(x-1)+[(x-1)-x]/(x-1)^2=1/(x-1)-1/(x-1)^2y'''=-1/(x-1)^2+1/[2(x-1)^3]y^(4)=1/[2(x-1)^3]-1/[2*3*(x-1)^4]设y^(n)=(-1)^n/[(n-2)!(x-1)^(n-1)]-(-1)^(n+1)/[(n-1)!(x-1)^n] (n>1)则[y^(n)]'=y^(n+1)=(-1)^(n+1)/[(n-2)!(n-1)(x-1)^n]-(-1)^(n+2)/[(n-1)!*n(x-1)^(n+1)]=(-1)^(n+1)/[(n+1-2)!(x-1)^(n+1-1)]-(-1)^(n+1+1)/[(n+1-1)!(x-1)^(n+1)]根据数学归纳法的定义,可知设y^(n)=(-1)^n/[(n-2)!(x-1)^(n-1)]-(-1)^(n+1)/[(n-1)!(x-1)^n] (n>1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式