著名的数学著作有哪些
1、《张丘建算经》:中国古代数学著作。(约公元5世纪)现传本有92问,比较突出的成就有最拦汪大公约数与最小公倍数的计算,各种等差数列问题的解决、某些不定方程问题求解等。自张邱建以後,中国数学家对百鸡问题的研究不断深入,百鸡问题也几乎成了不定方程的代名词,从宋代到清代围绕百鸡问题的数学研究取得了很好的成就。
2、《四元玉鉴》:《四元玉鉴》是元代杰出数学家朱世杰的代表作,其中的成果被视为中国筹算系统发展的顶峰。它是一部成就辉煌的数学名著,受到近代数学史研究者的高度评价,认为是中国数学著作中最重要的一部,同时也是中世纪最杰出的数学著作之一。
但其美中不足的是,在四元玉鉴中,对於一些重要的问题如求解高次联立方程组的消去法等解说过於简略,并且对於书中每一个问题的解法也没有列出详细的演算过程,故比较深奥,人们很难读懂。以致於自朱世杰之後,中国这种在数学上高度发展的局面不但没有保持发展下去,反而很多成就在明、清的一段时期内几乎失传。
3、《数书九章》:《数书九章》是对《九章算术》的继承和发展,概括了宋元时期中国传统数学的主要成就,标志着中国古代数学的高峰。当它还是抄本时就先后被收入《永乐大典》和《四库全书》。1842年第一次印刷后即在中国民间广泛流传。
《数书九章》最初叫《数术大略》或《数学大略》(9卷),分为9类,每类为灶升一卷。约到元代时更名为《数学九章》,内容也由9卷改为18卷。明初抄本被收入《永乐大典》(1408),另抄本藏于文渊阁。明代学者王应遴传抄时定名为《数书九章》,明末学者简辩仔赵琦美再抄时沿用此名。抄本形式流传到清代,1781年由李锐校订后收入《四库全书》。
4、《九章算术》:《九章算术》确定了中国古代数学的框架,以计算为中心的特点,密切联系实际,以解决人们生产、生活中的数学问题为目的的风格。
该书内容十分丰富,全书总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。
5、《孙子算经》:《孙子算经》是中国古代重要的数学著作。成书大约在四、五世纪,也就是大约一千五百年前,作者生平和编写年不详。传本的《孙子算经》共三卷。
卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法。卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”。
参考资料来源:百度百科-张丘建算经
参考资料来源:百度百科-四元玉鉴
参考资料来源:百度百科-数学九章
参考资料来源:百度百科-九章算术
参考资料来源:百度百科-孙子算经
2024-10-17 广告
科普类
1 拓扑学奇趣,[苏联]伏.巴尔佳斯基,伏.叶弗来莫维契编著,裘光明译
2 拓扑学的首要概念 作者:(美)陈锡驹(W.G.Chinn), (美)斯廷路德(N.E.Steenrod)著 一般附注:据1966年英文版译
3 Famous Problems of Elementary Geometry 作 者(德)克莱因(F. Kiein) , 译 者 沈一兵
4 奇妙而有趣的轮激运几何 作 者 韦尔斯
5 几何学的故事 作者:列昂纳多·姆洛迪诺夫
6 近代欧氏几何学 作者:(美)R·A·约翰逊著、单壿铅搭译
7 《古今数学思想》, (美)莫里斯·克莱因著,张理京等译 共4册
8 《数学,确定性的丧失》 作者:(美)克莱因 著,李宏魁 译
9 数学珍宝:历史文献精选 著 作 者: 李文林
10《几何学的新探索》 作者:(英)考克瑟特(Doxeter,H.S.M.), (美)格雷策(Greitzer,S.L.)著
11 几何的有名定理 作者:(日)矢野腊梁健太郎著
12 什么是数学 作者:(美)R·柯,H·罗宾 著,I·斯图尔特 修订,左平,张饴慈 译
13 《证明与反驳》 作者:伊姆雷.拉卡托斯
14 数学与猜想(共两卷) G.波利亚,
15 《数学的发现》 作者:(美)乔治·波利亚 著, 刘景麟 等译
16 《怎样解题》 作者:(美)G·波利亚|译者:涂泓//冯承天
17 数学——它的内容,方法和意义(共三卷) 原出版社 USSR Academy 作 者 [俄]A.D.亚历山大洛夫 译 者 孙小礼, 赵孟养 裘光明 严士健
18 圆锥曲线的几何性质----通俗数学名著译丛 作者:英国)a科克肖特
19 东西数学物语 作者:(日)平山谛 著,代钦 译 丛书名: 通俗数学名著译丛
20 来自圣经的证明(第3版)(英文版) 作者:(德)艾格尼,(德)齐格勒 著
21 计算出人意料(从开普勒到托姆的时间图景) 作者:伊法儿.埃克郎
22 爱丽丝漫游数学奇境 作者:(日)钓 浩康 著,吴方 译
23 费马大定理 又名: Fermat's Last Theorem 作者: (英)西蒙?辛格 译者: 薛密 副标题: 一个困惑了世间智者358年的谜
24 100个著名数学问题
25 数学中的智巧
26 可怕的科学《经典数学》系列 北京少年儿童出版社 尼克.阿诺德【英】等
传记类
1 《数字情种》(爱多士传) 作者:保罗.霍夫曼
2 《我的大脑敞开了——天才数学家保罗·爱多士传奇》 作者布鲁斯.谢克特[美]
3 《女数学家传奇》 作者:徐品方
4 《一个数学家的辩白》 作者: 哈代 译者: 王希勇
5 《数学大师》 译者: 徐源 作者: (美)E·T·贝尔 副标题: 从芝诺到庞加莱
6 现代数学家传略辞典 作 者 张奠宙
7 世界著名数学家传记(上、下集) 作 者 吴文俊
8 数学精英
9 最后的炼金术士——牛顿传 作者 (英)怀特
专业类
1 《从微分观点看拓扑》J.W.米尔诺
2 无穷小分析引论 Introduction to analysis of the infinite [作者]:欧拉
3 《自然哲学之数学原理》 作者:艾萨克.牛顿
4 几何原本(13卷视图全本) 作者:(古希腊)欧几里得 原著, 燕晓东 编译
5 《数论报告》希尔伯特
6 《算术研究》高斯
7 《代数几何原理》哈里斯(Harris)
8. 《微积分学教程》菲赫金哥尔兹
9. 《有限群表示》J.P.塞尔
10. 《曲线和曲面的微分几何》杜卡谟
11. 《曲面论》达布
12. 《数论导引》华罗庚
13. 《代数学基础》贾柯伯逊
14. 《交换代数》阿蒂亚
记住以下几点:
1,对于数学分析的学习,勤奋永远比天分重要。
2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。
3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。
4,看得懂的仔细看,看不懂的硬着头皮看。
5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。
6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。
7,经常回头看看自己走过的路
以上几点请在学其他课程时参考。
数学分析书:
初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。
中国人自己写的:
1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)
应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。辩槐
2《数学分析》华东师范大学数学系著
师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。
3《数学分析》陈纪修等著
以上三本是考研用的最多的三本书。
4《数学分析》李成章,黄玉民
是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。
5《数学分析讲义》刘玉链
我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。不要因为是函授教材就看不起,事实上最初的函授工作都是由最好的教授做的。细说就远了,总之可以看看。
6《数学分析》嫌搏曹之江等著
内蒙古大学数理基地的教材,偏重于物理的实现,会打一个很好的基础,不会盲目的向n维扩展。适合初学者。国家精品课程的课本。
7《数学携者友分析新讲》张筑生
公认是一本新观点的书,课后没有习题。材料的处理相当新颖。作者已经去世。
8《数学分析教程》常庚哲,史济怀著
中国科学技术大学教材,课后习题极难。
9《数学分析》徐森林著
与上面一本同出一门,清华大学教材。程度好的同学可以试着看一看。书很厚,看起来很慢。
10《数学分析简明教程》邓东翱著
也是一本可以经常看到的书,作者已经去世。国家精品课程的课本。
11许绍浦《数学分析教程》南京大学出版社
这些书应该够了,其他书不一一列举。从中选择一本当作课本就可以了。
1.1 几何原本
1.2 La Géométrie(几何学)
2 逻辑
2.1 概念文字(Begriffsschrift)
2.2 数学公式汇编(Formulario mathematico)
2.3 数学原理(Principia Mathematica)
2.4 哥德尔不完备定理
3 信息论
4 数论
4.1 算术研究(Disquisitiones Arithmeticae,或译整数论研考)
4.2 关于小于给定值的质数(On the Number of Primes Less Than a Given Magnitude)
4.3 数论讲义(Vorlesungen über Zahlentheorie)
4.4 数论,从汉默拉比到勒让德的历史的方法(Number Theory, An approach through history from
Hammurapi to Legendre)
4.5 数论导引(An Introduction to the Theory of Numbers)
5 微积分
5.1 自然哲学的数学原理(Philosophiae Naturalis Principia Mathematica)
5.2 普通读者的牛顿原理(Newton's Principia for the Common Reader)
6 数值分析
6.1 流数法(Method of Fluxions)
7 博弈论
7.1 博弈的演变和理论(Evolution and the Theory of Games)
7.2 博弈和经济行清吵为的理论(Theory of Games and Economic Behavior)
7.3 论数字和博弈(On Numbers and Games)
7.4 数学玩家的制胜之道(Winning Ways for your Mathematical Plays)
8 分形
8.1 英国的海岸线有多长?统计自相似和分数维度
9 早期手稿
9.1 兰德数学纸草书(Rhind Mathematical Papyrus)
9.2 九章算术
9.3 阿基米德困歼重写本(Archimedes Palimpsest)
9.4 沙计算手册(The Sand Reckoner)
10 教科书
10.1 纯数学教程(Course of Pure Mathematics)
10.2 问题求解艺术(Art of Problem Solving)
10.3 原逻辑: 标准一阶逻辑的元理论入门
11 流行读物
11.1 《哥德尔、埃舍尔、巴赫》
11.2 数学世界汪正冲
12 算术
12.1 算术:或者说,艺术的基础(Arithmetick: or, The Grounde of Arts)
12.2 校长的助手,实用和理论算术的综述
13 抽象代数
13.1 现代代数(Moderne Algebra)
14 线性代数
15 代数几何
15.1 代数凝聚层(Faisceaux Algébriques Cohérents)
15.2 代数几何和解析几何(Géométrie Algébrique et Géométrie Analytique)
15.3 代数几何基础(Éléments de géométrie algébrique)
15.4 代数几何研讨会(Séminaire de géométrie algébrique)
15.5 代数几何
16 泛代数
17 群论
18 单群
19 拓扑
19.1 拓扑学
20 图论
21 范畴论
21.1 数学工作者的范畴(Categories for the Working Mathematician)
21.2 计算科学的范畴论(Category Theory for Computing Science)
22 序理论
23 三角学
24 微分几何
25 微分拓扑
25.1 微分观点看拓扑(Topology from the Differentiable Viewpoint)
26 代数拓扑
26.1 代数拓扑
27 分形几何
28 离散数学
29 组合论
30 集合论
30.1 简单集合论(Naive Set Theory)
30.2 基数和序数(Cardinal and Ordinal Numbers)
30.3 连续统假设的一致性(The Consistency of the Continuum Hypothesis)
30.4 集合论和连续统假设(Set Theory and the Continuum Hypothesis)
31 优化原理
31.1 新变分法(The New Variational Method)
31.2 线性规划分解原理(Decomposition Principle for Linear Programs)
31.3 网络流和一般匹配(Network Flows and General Matchings)
31.4 路径,树和花(Paths, trees and Flowers)
31.5 定理证明过程的复杂度(The complexity of theorem proving procedures)
31.6 组合问题中的可归约性(Reducibility among combinatorial problems)
31.7 单纯形算法有多好?(How good is the simplex algorithm?)
31.8 线性规划和多项式时间算法(Linear Programming and Polynomial time algorithms)
31.9 线性规划的新多项式时间算法(New polynomial-time algorithm for linear
programming)
31.10 凸规划的内点多项式算法(Interior Point Polynomial Algorithms in Convex
Programming)