
数学问题!十万火急!!!!!!!!
函数g(x)与f(x)=√2sin(π/8x+π/4)关于x=8对称,求y=f(x)+g(x)的单调增区间请写出详细步骤,谢谢!!!!!!!!!...
函数g(x)与f(x)=√2 sin(π/8x+π/4) 关于x=8对称,求y=f(x)+g(x)的单调增区间
请写出详细步骤,谢谢!!!!!!!!! 展开
请写出详细步骤,谢谢!!!!!!!!! 展开
3个回答
展开全部
解:因为:函数g(x)与f(x)=√2 sin(π/8x+π/4) 关于x=8对称
所以:g(x)=f(8-x)=√2 sin(π/8(8-x)+π/4) =√2 sin(-π/8x+5π/4) =-√2 sin(π/8x-π/4)
y=f(x)+g(x)=√2 sin(π/8x+π/4) -√2 sin(π/8x-π/4)
=sinπ/8x+cosπ/8x-sinπ/8x+cosπ/8x
=2cosπ/8x
所以递增区间为:2kπ-π≤π/8x≤2kπ
即:16k-8≤x≤16k
递增区间是[16k-8,16k] ,其中 k∈Z
所以:g(x)=f(8-x)=√2 sin(π/8(8-x)+π/4) =√2 sin(-π/8x+5π/4) =-√2 sin(π/8x-π/4)
y=f(x)+g(x)=√2 sin(π/8x+π/4) -√2 sin(π/8x-π/4)
=sinπ/8x+cosπ/8x-sinπ/8x+cosπ/8x
=2cosπ/8x
所以递增区间为:2kπ-π≤π/8x≤2kπ
即:16k-8≤x≤16k
递增区间是[16k-8,16k] ,其中 k∈Z
展开全部
函数g(x)与f(x)=√2 sin(π/8x+π/4) 关于x=8对称
g(x)=f(8-x)=√2 sin(π/8(8-x)+π/4) =√2 sin(-π/8x+5π/4) =√2 sin(π/8x-π/4)
y=f(x)+g(x)=√2 sin(π/8x+π/4) +√2 sin(π/8x-π/4)
=sinπ/8x+cosπ/8x+sinπ/8x-cosπ/8x
=2sinπ/8x
所以y递增时:2kπ-π/2<=π/8x<=2kπ+π/2
16k-4<=x<=16k+4
递增区间是[16k-4,16k+4] k∈Z
g(x)=f(8-x)=√2 sin(π/8(8-x)+π/4) =√2 sin(-π/8x+5π/4) =√2 sin(π/8x-π/4)
y=f(x)+g(x)=√2 sin(π/8x+π/4) +√2 sin(π/8x-π/4)
=sinπ/8x+cosπ/8x+sinπ/8x-cosπ/8x
=2sinπ/8x
所以y递增时:2kπ-π/2<=π/8x<=2kπ+π/2
16k-4<=x<=16k+4
递增区间是[16k-4,16k+4] k∈Z
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:因为:函数g(x)与f(x)=√2 sin(π/8x+π/4) 关于x=8对称
g(x)=f(8-x)=√2 sin(π/8(8-x)+π/4) =√2 sin(-π/8x+5π/4) =√2 sin(π/8x-π/4)
再求导就行了
g(x)=f(8-x)=√2 sin(π/8(8-x)+π/4) =√2 sin(-π/8x+5π/4) =√2 sin(π/8x-π/4)
再求导就行了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询