在矩形ABCD中,已知AB=3,AD=4,P是AD上的动点,PE垂直于AC于E,PF垂直于BD于F,则PE+PF=?
在矩形ABCD中,已知AB=3,AD=4,P是AD上的动点,PE垂直于AC于E,PF垂直于BD于F,则PE+PF=?证明:过D作DM⊥AC于M,过P作PN//AC交DM于...
在矩形ABCD中,已知AB=3,AD=4,P是AD上的动点,PE垂直于AC于E,PF垂直于BD于F,则PE+PF=?
证明:过D作DM⊥AC于M,过P作PN//AC交DM于N
则PE=MN,
再证明Rt△PFD ≌Rt△DNP(AAS)
则PF=DN
故PE+PF=DM,因为AC=5,AD*DC=AC*DM,得DM=12/5
这个 {证明Rt△PFD ≌Rt△DNP(AAS) }
是怎么证出来的
把那两条边帮我写出来
详细一点谢谢 展开
证明:过D作DM⊥AC于M,过P作PN//AC交DM于N
则PE=MN,
再证明Rt△PFD ≌Rt△DNP(AAS)
则PF=DN
故PE+PF=DM,因为AC=5,AD*DC=AC*DM,得DM=12/5
这个 {证明Rt△PFD ≌Rt△DNP(AAS) }
是怎么证出来的
把那两条边帮我写出来
详细一点谢谢 展开
3个回答
展开全部
一定要这么证明吗? 这种证明方法不好,太复杂。
简单点的方法是:假设AC、BD的交点是O,连接PO
S△APO=(1/2)AO*PE
S△DPO=(1/2)DO*PF
所以 PE+PF=2S△APO/AO + 2S△DPO/DO
根据勾股定理,AO=DO=5/2
所以 PE+PF=(4/5)*(S△APO+S△DPO)=(4/5)*S△AOD=(4/5)*(3×4÷4)=12/5
简单点的方法是:假设AC、BD的交点是O,连接PO
S△APO=(1/2)AO*PE
S△DPO=(1/2)DO*PF
所以 PE+PF=2S△APO/AO + 2S△DPO/DO
根据勾股定理,AO=DO=5/2
所以 PE+PF=(4/5)*(S△APO+S△DPO)=(4/5)*S△AOD=(4/5)*(3×4÷4)=12/5
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
矩形四个角都是90度 做完垂直后就都相似了。。。 因为两个下面的角相等 一个90度 满足相似的条件了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设AP=X,则PD=4-X
矩形ABCD的对角线AC=BD=5
所以X/PE=5/3
(4-X)/PF=5/3
得PE=3X/5
PF=3(4-X)/5
所以PE+PF=12/5=2.4
矩形ABCD的对角线AC=BD=5
所以X/PE=5/3
(4-X)/PF=5/3
得PE=3X/5
PF=3(4-X)/5
所以PE+PF=12/5=2.4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询