已知抛物线C:y^2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点。(1)设l的斜率为1,求向量OA和向量OB的
夹角(2)设向量FB=λ向量AF,若λ∈[4,9]求l在y轴上截距的变化范围[(2)要巧算]不要只写思路把详细的计算过程写出来...
夹角(2)设向量FB=λ向量AF,若λ∈[4,9]求l在y轴上截距的变化范围[(2)要巧算]不要只写思路把详细的计算过程写出来
展开
2012-05-29
展开全部
(2)
抛物线焦点F坐标为(1,0),准线方程x=-1,设A坐标为(x1,y1)B坐标为(x2,y2)
点A到准线的距离D1=x1+1,点B到准线的距离D2=x2+1
向量FB=(x2-1,y2),向量AF=(1-x1,-y1),
由于向量FB=λ向量AF,故x2-1=λ(1-x1),且λ=|FB|/|AF|=D2/D1=(x2+1)/(x1+1)
两式联立解得:x1=1/λ,x2=λ
设直线l与y轴的交点为M(0,m),过B点做x轴的垂线,垂足是H,则|BH|=|y2|=√(4x2)=2√λ, RT△MOF∽RT△BHF,所以|OM|/|BH|=|OF|/|HF|
即|m|/2√λ=1/(λ-1) => |m|=2√λ/(λ-1),显然当λ=4时,|m|取得最大值4/3
当λ=9时,|m|取得最小值3/4
所以l在y轴上截距m的取值范围是[-4/3.-3/4]∪[3/4,4/3]
抛物线焦点F坐标为(1,0),准线方程x=-1,设A坐标为(x1,y1)B坐标为(x2,y2)
点A到准线的距离D1=x1+1,点B到准线的距离D2=x2+1
向量FB=(x2-1,y2),向量AF=(1-x1,-y1),
由于向量FB=λ向量AF,故x2-1=λ(1-x1),且λ=|FB|/|AF|=D2/D1=(x2+1)/(x1+1)
两式联立解得:x1=1/λ,x2=λ
设直线l与y轴的交点为M(0,m),过B点做x轴的垂线,垂足是H,则|BH|=|y2|=√(4x2)=2√λ, RT△MOF∽RT△BHF,所以|OM|/|BH|=|OF|/|HF|
即|m|/2√λ=1/(λ-1) => |m|=2√λ/(λ-1),显然当λ=4时,|m|取得最大值4/3
当λ=9时,|m|取得最小值3/4
所以l在y轴上截距m的取值范围是[-4/3.-3/4]∪[3/4,4/3]
展开全部
极坐标你学过没有??这种涉及到焦点和比例之类的问题用极坐标相当适合,你自己先看看极坐标,看明白了我在讲给你听
更多追问追答
追问
学过,快讲讲!
追答
以F为极点,x轴为及极轴建立极坐标系,则有抛物线y^2=4x的极坐标方程为ρ=2/(1-cosθ),第一问用极坐标也行用直角坐标也行,第一问不是很难,那我只写第二问的
AF=2/(1-cosθ) BF=2/(1+cosθ)所以λ=(1-cosθ)/(1+cosθ) 所以cosθ∈[-4/5,3/5]所以k=+-tanθ∈[-4/3.-3/4]∪[3/4,4/3]
直线y=k(x-1)所以截距b=-k∈[-4/3.-3/4]∪[3/4,4/3]
是不是很简单啊,极坐标做这种题目很有优势的,你自己研究一下极坐标表示圆锥曲线的统一形式
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询