已知数列{an},{bn}满足a1=2,2an=1+ana(n+1),bn=an-1,设数列{bn}的前n项和为Sn,Tn=S2n-Sn求证当n>2时
2个回答
展开全部
bn=an-1 an=bn+1 b(n+1)=a(n+1)-1 a(n+1)=b(n+1)+1
2an=1+ana(n+1),
a(n+1)=2-1/an
代入:a(n+1)=b(n+1)+1 an=bn+1
b(n+1)+1=2-1/(bn+1)
b(n+1)=1-1/(bn+1)
b(n+1)bn+b(n+1)=bn+1-1
b(n+1)bn+b(n+1)=bn
1+1/bn=1/b(n+1)
1/(b(n+1))-1/bn=1
这是以1/b1为首,1为公差的等差数列。
1/bn=1/a1+(n-1)d=1/2+(n-1)=n-1/2
bn=1/(n-1/2)=2/(2n-1)
Sn=2+2/3+2/5+......+2/(2n-1)
Tn=S2n-Sn=2[1/(2n+1)+1/(2n+3)+1/(2n+5)......+1/(4n-1)]
S2^n=2(1+1/3+1/5+....+1/(2*2^n-1))>=(7n+11)/12
数学归纳法:
n=2时,
S4=2(1+1/3+1/5+1/7)>(7*2+11)/12=25/11成立。
n=k时成立。S2^k=2(1+1/3+1/5+...+1/(2^(k+1)-1)>=(7k+11)/12
n=k+1时,
S2^(k+1)=S2*2k)>=(7*2+11)/12+2[1/(2^(K+1)+1)+1/(2^(K+1)+3)+.....+1/(2^(K+2)-1)]
1/(2^(K+1)+1)+1/(2^(K+1)+3)+.....+1/(2^(K+2)-1)
=[1/(2^(k+1)+1)+....+1/(2^(k+1)+2^k-1)]+[1/(2^(K+1)+2^k+1)+.....+1/(2^(K+2)-1)]
>=2^(k-1)/(2^(k+1)+2^k-1)+2^(k-1)/(2^(k+2)-1)
>2^(k-1)/(2^(k+1)+2^k)+2^(k-1)/(2^(k+2))=1/6+1/8=14/48=7/24
S2^(k+1))>=(7*k+11)/12+2*7/24=(7k+7+11)/12=7(k+1)+11)/12
n=k+1也成立。
所以原式成立。
2an=1+ana(n+1),
a(n+1)=2-1/an
代入:a(n+1)=b(n+1)+1 an=bn+1
b(n+1)+1=2-1/(bn+1)
b(n+1)=1-1/(bn+1)
b(n+1)bn+b(n+1)=bn+1-1
b(n+1)bn+b(n+1)=bn
1+1/bn=1/b(n+1)
1/(b(n+1))-1/bn=1
这是以1/b1为首,1为公差的等差数列。
1/bn=1/a1+(n-1)d=1/2+(n-1)=n-1/2
bn=1/(n-1/2)=2/(2n-1)
Sn=2+2/3+2/5+......+2/(2n-1)
Tn=S2n-Sn=2[1/(2n+1)+1/(2n+3)+1/(2n+5)......+1/(4n-1)]
S2^n=2(1+1/3+1/5+....+1/(2*2^n-1))>=(7n+11)/12
数学归纳法:
n=2时,
S4=2(1+1/3+1/5+1/7)>(7*2+11)/12=25/11成立。
n=k时成立。S2^k=2(1+1/3+1/5+...+1/(2^(k+1)-1)>=(7k+11)/12
n=k+1时,
S2^(k+1)=S2*2k)>=(7*2+11)/12+2[1/(2^(K+1)+1)+1/(2^(K+1)+3)+.....+1/(2^(K+2)-1)]
1/(2^(K+1)+1)+1/(2^(K+1)+3)+.....+1/(2^(K+2)-1)
=[1/(2^(k+1)+1)+....+1/(2^(k+1)+2^k-1)]+[1/(2^(K+1)+2^k+1)+.....+1/(2^(K+2)-1)]
>=2^(k-1)/(2^(k+1)+2^k-1)+2^(k-1)/(2^(k+2)-1)
>2^(k-1)/(2^(k+1)+2^k)+2^(k-1)/(2^(k+2))=1/6+1/8=14/48=7/24
S2^(k+1))>=(7*k+11)/12+2*7/24=(7k+7+11)/12=7(k+1)+11)/12
n=k+1也成立。
所以原式成立。
2012-05-29
展开全部
S2^n≥(7n+11)/12是什么意思?表达式是这样的吗?
追问
就是S(2的n次方),就是前2的n次方项的和
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询