想知道这道题的做法,谢谢
展开全部
∫(-1,1)x/√(5-4x)dx
=-1/4∫(-1,1)x/√(5-4x)d(5-4x)
=-1/2∫(-1,1)xd√(5-4x)
=-1/2x√(5-4x)|(-1,1)+1/2∫(-1,1)√(5-4x)dx
=-1/2[1√(5-4×1)-(-1)√(5-4×(-1))]+1/2×(-1/4)∫(-1,1)√(5-4x)d(5-4x)
=-1/2[1×1+1×3]-1/8×2/3(5-4x)^(3/2)|(-1,1)
=-2-1/12[(5-4×1)^(3/2)-(5-4×(-1))^(3/2)]
=-2-1/12[1-27]
=-2+13/6
=1/6
注:^——表示次方。
=-1/4∫(-1,1)x/√(5-4x)d(5-4x)
=-1/2∫(-1,1)xd√(5-4x)
=-1/2x√(5-4x)|(-1,1)+1/2∫(-1,1)√(5-4x)dx
=-1/2[1√(5-4×1)-(-1)√(5-4×(-1))]+1/2×(-1/4)∫(-1,1)√(5-4x)d(5-4x)
=-1/2[1×1+1×3]-1/8×2/3(5-4x)^(3/2)|(-1,1)
=-2-1/12[(5-4×1)^(3/2)-(5-4×(-1))^(3/2)]
=-2-1/12[1-27]
=-2+13/6
=1/6
注:^——表示次方。
追问
谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询