为什么质子和电子能转变为一个中子
展开全部
在巨大的压力下,处于超固态的物质,使原来已经拥挤得紧紧的原子核和电子不能再紧了,这时候原子核只好被迫解散,从里面释放出质子与中子。从原子核里放出的质子,在极大压力下会与电子结合为中子。这样,物质的构造就发生了根本性的变化,原来由原子核和电子构造的物质,如今都变成了中子。
这样的状态,就叫做“中子态”。
扩展资料
一、质子应用
物理中质子常被用来在加速器中加速到近光速后用来与其它粒子碰撞。这样的试验为研究原子核结构提供了极其重要的数据。慢速的质子也可能被原子核吸收用来制造人造同位素或人造元素。核磁
共振技术使用质子的自旋来测试分子的结构。
二、中子的用途
中子是研究核反应很好的轰击粒子,由于它不带电,即使能量很低,也能引起核反应。中子还在核裂变反应中起重要作用。电中性的中子不能产生直接的电离作用,无法直接探测,只能通过它与核反应的次级效应来探测。
参考资料来源:百度百科-质子
参考资料来源:百度百科-中子
创远信科
2024-07-24 广告
2024-07-24 广告
介电常数,简称ε,是衡量材料在电场中电介质性能的重要物理量。它描述了材料对电场的响应能力,定义为电位移D与电场强度E之比,即ε=D/E。介电常数越大,材料在电场中的极化程度越高,存储电荷能力越强。在电子和电气工程领域,介电常数对于理解和设计...
点击进入详情页
本回答由创远信科提供
展开全部
中子(Neutron)是组成原子核的核子之一。中子是组成原子核构成化学元素不可缺少的成分(注意:氢元素H不含中子),虽然原子的化学性质是由核内的质子数目确定的,但是如果没有中子,由于带正电荷质子间的排斥力(质子带正电,中子不带电),就不可能构成除氢之外的其他元素。
性质
稳定性和β衰变
中子β衰变的费曼图。经由一个W玻色子,中子衰变为一个质子,同时释放出一个电子和一个反电子中微子。
中子由三个夸克构成。根据标准模型,为了保持重子数守恒,中子唯一可能的衰变途径是其中一个夸克通过弱相互作用改变其味。组成中子的三个夸克中,两个是下夸克(电荷?1?3e),另外一个是上夸克(电荷+2?3e)。一个下夸克可以衰变成一个较轻的上夸克,并释放出一个W玻色子。这样中子可以衰变成质子,同时释放出一个电子和一个反电子中微子。
自由中子的衰变
自由中子不稳定。据此估计其半衰期为611.0±1.0 秒(大概10分钟11秒)。中子的衰变可用以下方程描述:
根据中微子、质子和电子的质量,此反应的衰变能为0.782343 兆电子伏特。如果此反应中中微子的动能忽略不计的话,已测得电子的最大能量为0.782±.013兆电子伏特。这一实验结果误差太大,无法用于估计中微子的静止质量。
有千分之一的自由中子会在生成质子、电子和中微子的同时,释放出γ射线:
这种γ射线是轫致辐射的结果。当反应中释放出的电子在质子产生的电磁场中运动时,高速运动的电子骤然减速发出的辐射。有时原子核中束缚态的中子衰变时,也会产生γ射线。
有极少量的自由中子(大概百万分之四)会发生所谓的双体衰变。在此反应中,电子在产生后未能获得足够的能量脱离质子(估计为13.6电子伏特),于是和质子生成一个中性的氢原子。反应的所有能量皆转化为反电子中微子的动能。
束缚态中子的衰变
不稳定原子核里的中子可以像自由中子一样衰变。但是,中子衰变的逆过程也可以发生,即逆β衰变。质子可以转变为一个中子,同时放出一个正电子和一个电子中微子:
质子还可以通过电子俘获转变成一个中子,同时放出一个电子中微子:
理论上,核内中子俘获正电子生成质子也是有可能的。但是,两个因素对此过程不利。一方面原子核带正电荷,因此同正电子同性相斥。另一方面正电子和电子相遇会发生湮灭。因此正电子俘获事件的几率很小。
因原子核内的中子受到其他因素的制约,稳定性和自由中子不尽相同。比如,如果核内一个中子衰变成质子,核内正电荷的斥力就会增大。这个斥力的势能就变成中子衰变的一个势垒。如果中子不能突破这个势垒,它就无法衰变。这也可以解释在自由状态下稳定的质子有时会在束缚态中转变为中子。
电偶极矩
标准模型预言中子具有微小但非零的电偶极矩。但是测量其数值所需的精度远远超过实验条件。标准模型不可能是对物理现实的最终和最完整的描述。超越标准模型的新理论得到的数值一般要比标准模型的大得多。目,前,至少有四组实验力图测量中子的电偶极矩:
劳厄-朗之万研究所(Institut Laue–Langevin)的低温中子电偶极矩实验(CryoEDM),在建
保罗·谢若研究所(Paul Scherrer Institute)的中子电偶极矩实验(nEDM),在建
橡树岭国家实验室散裂中子源(Spallation Neutron Source)的中子电偶极矩实验(nEDM),拟建
劳厄-朗之万研究所的中子电偶极矩实验(nEDM),
磁矩
虽然中子是电中性粒子,但是中子具有微小但非零的磁矩。
反中子
反中子是中子的反粒子,是由布鲁斯·考克(Bruce Cork)于1956年发现,比反质子的发现晚一年时间。CPT对称理论对粒子和反粒子的性质有严格的限制,因此观测中子-反中子可以对CPT对称进行缜密的检验。中子和反中子质量差异约为9±6×10,仅为2σ,不足以证明CPT对称破缺。
中子结构和电荷的几何分布
一篇2007年发表的文章进行了不依赖于模型的分析后作出结论,中子的外壳带负电荷,中间层带正电荷,而中心带有负电荷。[26]简单的说,中子的电负性外壳同质子相互吸引。但是,在原子核中,质子和中子之间最主要的作用力为核力。这种力跟粒子是否带电荷无关。
性质
稳定性和β衰变
中子β衰变的费曼图。经由一个W玻色子,中子衰变为一个质子,同时释放出一个电子和一个反电子中微子。
中子由三个夸克构成。根据标准模型,为了保持重子数守恒,中子唯一可能的衰变途径是其中一个夸克通过弱相互作用改变其味。组成中子的三个夸克中,两个是下夸克(电荷?1?3e),另外一个是上夸克(电荷+2?3e)。一个下夸克可以衰变成一个较轻的上夸克,并释放出一个W玻色子。这样中子可以衰变成质子,同时释放出一个电子和一个反电子中微子。
自由中子的衰变
自由中子不稳定。据此估计其半衰期为611.0±1.0 秒(大概10分钟11秒)。中子的衰变可用以下方程描述:
根据中微子、质子和电子的质量,此反应的衰变能为0.782343 兆电子伏特。如果此反应中中微子的动能忽略不计的话,已测得电子的最大能量为0.782±.013兆电子伏特。这一实验结果误差太大,无法用于估计中微子的静止质量。
有千分之一的自由中子会在生成质子、电子和中微子的同时,释放出γ射线:
这种γ射线是轫致辐射的结果。当反应中释放出的电子在质子产生的电磁场中运动时,高速运动的电子骤然减速发出的辐射。有时原子核中束缚态的中子衰变时,也会产生γ射线。
有极少量的自由中子(大概百万分之四)会发生所谓的双体衰变。在此反应中,电子在产生后未能获得足够的能量脱离质子(估计为13.6电子伏特),于是和质子生成一个中性的氢原子。反应的所有能量皆转化为反电子中微子的动能。
束缚态中子的衰变
不稳定原子核里的中子可以像自由中子一样衰变。但是,中子衰变的逆过程也可以发生,即逆β衰变。质子可以转变为一个中子,同时放出一个正电子和一个电子中微子:
质子还可以通过电子俘获转变成一个中子,同时放出一个电子中微子:
理论上,核内中子俘获正电子生成质子也是有可能的。但是,两个因素对此过程不利。一方面原子核带正电荷,因此同正电子同性相斥。另一方面正电子和电子相遇会发生湮灭。因此正电子俘获事件的几率很小。
因原子核内的中子受到其他因素的制约,稳定性和自由中子不尽相同。比如,如果核内一个中子衰变成质子,核内正电荷的斥力就会增大。这个斥力的势能就变成中子衰变的一个势垒。如果中子不能突破这个势垒,它就无法衰变。这也可以解释在自由状态下稳定的质子有时会在束缚态中转变为中子。
电偶极矩
标准模型预言中子具有微小但非零的电偶极矩。但是测量其数值所需的精度远远超过实验条件。标准模型不可能是对物理现实的最终和最完整的描述。超越标准模型的新理论得到的数值一般要比标准模型的大得多。目,前,至少有四组实验力图测量中子的电偶极矩:
劳厄-朗之万研究所(Institut Laue–Langevin)的低温中子电偶极矩实验(CryoEDM),在建
保罗·谢若研究所(Paul Scherrer Institute)的中子电偶极矩实验(nEDM),在建
橡树岭国家实验室散裂中子源(Spallation Neutron Source)的中子电偶极矩实验(nEDM),拟建
劳厄-朗之万研究所的中子电偶极矩实验(nEDM),
磁矩
虽然中子是电中性粒子,但是中子具有微小但非零的磁矩。
反中子
反中子是中子的反粒子,是由布鲁斯·考克(Bruce Cork)于1956年发现,比反质子的发现晚一年时间。CPT对称理论对粒子和反粒子的性质有严格的限制,因此观测中子-反中子可以对CPT对称进行缜密的检验。中子和反中子质量差异约为9±6×10,仅为2σ,不足以证明CPT对称破缺。
中子结构和电荷的几何分布
一篇2007年发表的文章进行了不依赖于模型的分析后作出结论,中子的外壳带负电荷,中间层带正电荷,而中心带有负电荷。[26]简单的说,中子的电负性外壳同质子相互吸引。但是,在原子核中,质子和中子之间最主要的作用力为核力。这种力跟粒子是否带电荷无关。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询