抽屉原理是什么
3个回答
展开全部
第一抽屉原理
原理1: 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。 抽屉原理
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。 原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。 证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。 原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。 原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。 证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
原理1: 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。 抽屉原理
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。 原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。 证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。 原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。 原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。 证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
斯科信息技术
2023-10-12 广告
2023-10-12 广告
价格还是要有购买数量等因素来定的。更多详尽准确的信息可以找深圳市斯科信息技术有限公司。深圳市斯科信息技术有限公司是一家专业致力于智能终端设备生产销售的公司。主要生产销售智能柜体、图书分拣设备等产品,质量上乘,结实耐用,价格合理,经济实惠,多...
点击进入详情页
本回答由斯科信息技术提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询