复变函数,
1个回答
展开全部
设复平面上一曲线C由参数方程z=z(t)给出,现在考虑曲线C在函数f(z)下的像,它也是一条曲线,记为C',其方程为z'=f[z(t)]。对于同一参数t0,对应于分别位于C和C'上的点z0和z0',两条曲线分别在这两点处的切线一般是不同的,它们之间的夹角称为C在f(z)映射下在z0处的转动角。再考虑在C上取一邻近z0的另一点z1,设曲线C上z0到z1之间的一段弧的长度为Δs,相应地曲线C'上f(z0)和f(z1)之间的弧长为Δs',则极限limΔs'/Δs称为曲线C在f(z)映射下z0处的伸缩率。可以证明,如果f(z)在z0处解析,且f'(z0)≠0,则该点处的转动角等于Argf'(z0),伸缩率等于|f'(z0)|。注意转动角和伸缩率都与曲线C的形状无关,称为保角性和伸缩率不变性,同时把具有这两种不变性的映射称为共形映射。
追问
兄弟,你说啥呢
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询