求∫∫D (y/(1+x^2+y^2)^(3/2))dσ 二重积分 0<=x<=1 0<=y<=1
1个回答
展开全部
∫∫D (y/(1+x^2+y^2)^(3/2))dσ
=∫[0,1]dx∫[0,1] y/(1+x^2+y^2)^3/2 dy
=1/2∫[0,1]dx∫[0,1] d(1+x^2+y^2)/(1+x^2+y^2)^3/2
=1/2∫[0,1]dx (-2)*(1+x^2+y^2)^(-1/2) [0,1]
=∫[0,1] 1/√(1+x^2)-1/√(2+x^2) dx
=ln(x+√(1+x^2))-ln(x/√2+√(1+x^2/2)) [0,1]
=ln(2+√2)-ln(1+√3)
=∫[0,1]dx∫[0,1] y/(1+x^2+y^2)^3/2 dy
=1/2∫[0,1]dx∫[0,1] d(1+x^2+y^2)/(1+x^2+y^2)^3/2
=1/2∫[0,1]dx (-2)*(1+x^2+y^2)^(-1/2) [0,1]
=∫[0,1] 1/√(1+x^2)-1/√(2+x^2) dx
=ln(x+√(1+x^2))-ln(x/√2+√(1+x^2/2)) [0,1]
=ln(2+√2)-ln(1+√3)
更多追问追答
追问
第二步是怎么变成的?
追答
dσ就是对面积元求△
dσ就是dxdy
所以
∫∫D (y/(1+x^2+y^2)^(3/2))dσ
=∫[0,1] ∫[0,1] y/(1+x^2+y^2)^3/2 dxdy 重积分交换次序
=∫[0,1] (∫[0,1] y/(1+x^2+y^2)^3/2 dy)dx
=∫[0,1]dx∫[0,1] y/(1+x^2+y^2)^3/2 dy
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询