dx/x(1+x)(1+x+x^2)的不定积分?

 我来答
教育小百科达人
2019-04-15 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:458万
展开全部

1/[x(1+x)(1+x+x^2)] ≡A/x+B/(x+1) +(Cx+D)/(x^2+x+1)

=>

1 ≡A(1+x)(1+x+x^2)+Bx(1+x+x^2) +(Cx+D)x(1+x)

x=0, => A = 1/3

x=-1, =>B=-1

A+B+C =0

1/3 -1 + C=0

C= -2/3

x=1

6A + 3B + 2(C+D) = 1

2-3 - 4/3 + 2D =1

D = 5/3

1/[x(1+x)(1+x+x^2)]

≡(1/3)(1/x)- 1/(x+1) + (1/3)[(-2x+5)/(x^2+x+1)]

∫dx/[x(1+x)(1+x+x^2)]

=∫{ (1/3)(1/x)- 1/(x+1) +(1/3) [(-2x+5)/(x^2+x+1) } dx

=(1/3)ln|x| - ln|x+1| +(1/3) ∫(-2x+5)/(x^2+x+1) dx

=(1/3)ln|x| - ln|x+1| -(1/3) ∫(2x+1)/(x^2+x+1) dx +2∫dx/(x^2+x+1) dx

=(1/3)ln|x| - ln|x+1| -(1/3)ln|x^2+x+1| +2∫dx/(x^2+x+1) dx

=(1/3)ln|x| - ln|x+1| -(1/3)ln|x^2+x+1| +(4√3/3)arctan[( 2x+1)/√3] + C

x^2+x+1 = (x +1/2)^2 + 3/4

x+1/2 =(√3/2)tanu

dx =(√3/2)(secu)^2 du

∫dx/(x^2+x+1)

=∫(√3/2)(secu)^2 du/[ (3/4) (secu)^2 ]

= (2√3/3) u + C

= (2√3/3)arctan[( 2x+1)/√3] + C

扩展资料:

定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

参考资料来源:百度百科——不定积分

华瑞RAE一级代理商
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优... 点击进入详情页
本回答由华瑞RAE一级代理商提供
晴晴知识加油站
高能答主

2019-07-02 · 让梦想飞扬,让生命闪光。
晴晴知识加油站
采纳数:3595 获赞数:661058

向TA提问 私信TA
展开全部

结果为:u/(u^2+a^2)+2∫du/(u^2+a^2)-∫(2a^2)/(u^2+a^2)^2du

解题过程如下:

原式=∫du/(u^2+a^2)

=u/(u^2+a^2)-∫ud[1/(u^2+a^2)]

=u/(u^2+a^2)+∫2u^2/(u^2+a^2)^2du

=u/(u^2+a^2)+∫(2u^2+2a^2-2a^2)/(u^2+a^2)^2du

=u/(u^2+a^2)+2∫du/(u^2+a^2)-∫(2a^2)/(u^2+a^2)^2du

扩展资料

求函数积分的方法:

设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C。

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。

积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的实函数f(x),在区间[a,b]上的定积分记为:

若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
nsjiang1
2013-06-21 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3689万
展开全部
这是公式,是特殊解法:
∫du/(u^2+a^2)
=u/(u^2+a^2)-∫ud[1/(u^2+a^2)]
=u/(u^2+a^2)+∫2u^2/(u^2+a^2)^2du
=u/(u^2+a^2)+∫(2u^2+2a^2-2a^2)/(u^2+a^2)^2du
=u/(u^2+a^2)+2∫du/(u^2+a^2)-∫(2a^2)/(u^2+a^2)^2du
移项就是
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
轮看殊O
高粉答主

2019-05-07 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:705万
展开全部

这是公式,是特殊解法:

∫du/(u^2+a^2)

=u/(u^2+a^2)-∫ud[1/(u^2+a^2)]

=u/(u^2+a^2)+∫2u^2/(u^2+a^2)^2du

=u/(u^2+a^2)+∫(2u^2+2a^2-2a^2)/(u^2+a^2)^2du

=u/(u^2+a^2)+2∫du/(u^2+a^2)-∫(2a^2)/(u^2+a^2)^2du

扩展资料

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C

10、∫ secx dx =ln|cot(x/2)| + C 

= (1/2)ln|(1 + sinx)/(1 - sinx)| + C 

= - ln|secx - tanx| + C 

= ln|secx + tanx| + C

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tllau38
高粉答主

2018-11-25 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:1.9亿
展开全部
let
1/[x(1+x)(1+x+x^2)] ≡A/x+B/(x+1) +(Cx+D)/(x^2+x+1)
=>
1 ≡A(1+x)(1+x+x^2)+Bx(1+x+x^2) +(Cx+D)x(1+x)
x=0, => A = 1/3
x=-1, =>B=-1
coef. of x^3

A+B+C =0
1/3 -1 + C=0
C= -2/3
x=1
6A + 3B + 2(C+D) = 1
2-3 - 4/3 + 2D =1
D = 5/3
1/[x(1+x)(1+x+x^2)]

≡(1/3)(1/x)- 1/(x+1) + (1/3)[(-2x+5)/(x^2+x+1)]

∫dx/[x(1+x)(1+x+x^2)]
=∫{ (1/3)(1/x)- 1/(x+1) +(1/3) [(-2x+5)/(x^2+x+1) } dx
=(1/3)ln|x| - ln|x+1| +(1/3) ∫(-2x+5)/(x^2+x+1) dx
=(1/3)ln|x| - ln|x+1| -(1/3) ∫(2x+1)/(x^2+x+1) dx +2∫dx/(x^2+x+1) dx
=(1/3)ln|x| - ln|x+1| -(1/3)ln|x^2+x+1| +2∫dx/(x^2+x+1) dx

=(1/3)ln|x| - ln|x+1| -(1/3)ln|x^2+x+1| +(4√3/3)arctan[( 2x+1)/√3] + C
consider
x^2+x+1 = (x +1/2)^2 + 3/4
let
x+1/2 =(√3/2)tanu
dx =(√3/2)(secu)^2 du
∫dx/(x^2+x+1)
=∫(√3/2)(secu)^2 du/[ (3/4) (secu)^2 ]
= (2√3/3) u + C
= (2√3/3)arctan[( 2x+1)/√3] + C
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(9)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式