划线部分怎么积分?
1个回答
展开全部
∫d〔f(t)〕/{f(t)〔(1-f²(t)〕}
令y=f(t)
则原式=∫dy/〔y(1-y²)〕
=1/2 ∫{1/〔y(1-y)〕+1/〔y(1+y)〕}dy
=1/2∫{〔1/y-1/(y-1)〕+〔1/y-1/(y+1)〕}dy
=1/2〔(㏑|y|-㏑|y-1|)+(㏑|y|-㏑|y+1|)〕 +C
=1/2〔㏑|y/(y-1)| +㏑|y/(y+1)|〕+C
=1/2 ㏑|y²/(y²-1)| +C
=1/2 ㏑ |f²(t)/〔f²(t)-1〕| +C
令y=f(t)
则原式=∫dy/〔y(1-y²)〕
=1/2 ∫{1/〔y(1-y)〕+1/〔y(1+y)〕}dy
=1/2∫{〔1/y-1/(y-1)〕+〔1/y-1/(y+1)〕}dy
=1/2〔(㏑|y|-㏑|y-1|)+(㏑|y|-㏑|y+1|)〕 +C
=1/2〔㏑|y/(y-1)| +㏑|y/(y+1)|〕+C
=1/2 ㏑|y²/(y²-1)| +C
=1/2 ㏑ |f²(t)/〔f²(t)-1〕| +C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询