微分中值定理题目
2个回答
展开全部
设M=0,则f(x)=0,因此f′(x)=0,显然 |f′(ξ)|≥2M成立。
设M>0,则由连续函数的介值定理知,存在一点x0ϵ(0,1),使 f(x0)=M。由于x0为区间(0,1)的内点,由费马定理得,f′(x0)=0。
当0≤x0≤1/2时,由拉氏中值定理,f(x0)-f(0)=f′(ξ)x0,其中ξϵ(0,1/2)。取绝对值,得
|f(x0)|=|f′(ξ)|x0≤|f′(ξ)|(1/2),即 |f′(ξ)|≥2M。
当1/2<x0≤1时,由拉氏中值定理,f(1)-f(x0)=f′(ξ1)(1-x0),其中ξ1ϵ(1/2,1)。取绝对值,得
|f(x0)|=|f′(ξ1)|(1-x0)≤|f′(ξ1)|(1/2),即 |f′(ξ1)|≥2M。证毕。
设M>0,则由连续函数的介值定理知,存在一点x0ϵ(0,1),使 f(x0)=M。由于x0为区间(0,1)的内点,由费马定理得,f′(x0)=0。
当0≤x0≤1/2时,由拉氏中值定理,f(x0)-f(0)=f′(ξ)x0,其中ξϵ(0,1/2)。取绝对值,得
|f(x0)|=|f′(ξ)|x0≤|f′(ξ)|(1/2),即 |f′(ξ)|≥2M。
当1/2<x0≤1时,由拉氏中值定理,f(1)-f(x0)=f′(ξ1)(1-x0),其中ξ1ϵ(1/2,1)。取绝对值,得
|f(x0)|=|f′(ξ1)|(1-x0)≤|f′(ξ1)|(1/2),即 |f′(ξ1)|≥2M。证毕。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询