2个回答
展开全部
T=2π/(2ω)=π/ω
∫[0:T/2]cos(2ωt+φ)dt
=[1/(2ω)]∫[0:π/(2ω)]cos(2ωt+φ)d(2ωt+φ)
=[1/(2ω)]sin(2ωt+φ)|[0:π/(2ω)]
=[1/(2ω)][sin(π+φ)-sinφ]
=[1/(2ω)](-sinφ-sinφ)
=[1/(2ω)](-2sinφ)
=-sinφ / ω
∫[0:T/2]cos(2ωt+φ)dt
=[1/(2ω)]∫[0:π/(2ω)]cos(2ωt+φ)d(2ωt+φ)
=[1/(2ω)]sin(2ωt+φ)|[0:π/(2ω)]
=[1/(2ω)][sin(π+φ)-sinφ]
=[1/(2ω)](-sinφ-sinφ)
=[1/(2ω)](-2sinφ)
=-sinφ / ω
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询