高数 换元不定积分
3个回答
展开全部
令√(x^2-9)=u,则:x^2=u^2+9,∴d(x^2)=2udu.
∴∫[√(x^2-9)/x]dx
=(1/2)∫[2x√(x^2-9)/x^2]dx
=(1/2)∫[√(x^2-9)/x^2]d(x^2)
=(1/2)∫[u/(u^2+9)]·2udu
=∫{[(u^2+9)-9]/(u^2+9)}du
=∫du-9∫[1/(u^2+9)]du
=u-9∫{1/[9(u/3)^2+9]}du
=u-3∫{1/[(u/3)^2+1]}d(u/3)
=u-3arctan(u/3)+C
=√(x^2-9)-3arctan[(1/3)√(x^2-9)]+C.
∴∫[√(x^2-9)/x]dx
=(1/2)∫[2x√(x^2-9)/x^2]dx
=(1/2)∫[√(x^2-9)/x^2]d(x^2)
=(1/2)∫[u/(u^2+9)]·2udu
=∫{[(u^2+9)-9]/(u^2+9)}du
=∫du-9∫[1/(u^2+9)]du
=u-9∫{1/[9(u/3)^2+9]}du
=u-3∫{1/[(u/3)^2+1]}d(u/3)
=u-3arctan(u/3)+C
=√(x^2-9)-3arctan[(1/3)√(x^2-9)]+C.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令x=3secu
∫[√(x²-9)/x]dx
=∫[√(9sec²u-9)/(3secu)]d(3secu)
=∫[3tanu·3secutanu/(3secu)]du
=∫3tan²udu
=3∫(sec²u-1)du
=3(tanu-u) +C
=√(x²-9)-3arccos(3/x) +C
∫[√(x²-9)/x]dx
=∫[√(9sec²u-9)/(3secu)]d(3secu)
=∫[3tanu·3secutanu/(3secu)]du
=∫3tan²udu
=3∫(sec²u-1)du
=3(tanu-u) +C
=√(x²-9)-3arccos(3/x) +C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询