如图求极限
2019-10-16 · 知道合伙人教育行家
关注
展开全部
2高中倍角公式
=lim<n->无穷>{[2^n*sin(x/2^n)*cos(x/2)*cos(x/2^2)*…*cos(x/2^n)]/[2^n*sin(x/2^n)]}
=lim<n->无穷>{sinx/[2^n*sin(x/2^n)]}
=lim<n->无穷>{sinx/[2^n*sin(x/2^n)]}
=sinx/x
1有关e的重要极限
=lim<x->0>e^{[x^2+f(x)]/x^2}
=lim<x->0>e^[1+f(x)/x^2]=e^3
lim<x->0>[f(x)/x^2]=2
=lim<n->无穷>{[2^n*sin(x/2^n)*cos(x/2)*cos(x/2^2)*…*cos(x/2^n)]/[2^n*sin(x/2^n)]}
=lim<n->无穷>{sinx/[2^n*sin(x/2^n)]}
=lim<n->无穷>{sinx/[2^n*sin(x/2^n)]}
=sinx/x
1有关e的重要极限
=lim<x->0>e^{[x^2+f(x)]/x^2}
=lim<x->0>e^[1+f(x)/x^2]=e^3
lim<x->0>[f(x)/x^2]=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询