级数∑(ln n /n^p)) 的敛散性 用比较判别法证明

zssasa1991
2012-05-31 · TA获得超过4274个赞
知道大有可为答主
回答量:1258
采纳率:66%
帮助的人:596万
展开全部
比较法
p>1时
lim(n→∞)(lnn/n^p)/(1/n^(1+(p-1)/2))
=lim(n→∞)lnn/n^(p-1)/2
=lim(n→∞) (1/n)/(p-1)/2*n^[(p-1)/2-1]
=lim(n→∞) 1/(p-1)/2*n^(p-1)/2=0
而1/n^(1+(p-1)/2)是级数收敛的
所以(lnn/n^p收敛

p<=1时
lim(n→∞) lnn/n^p/(1/n)
=lim(n→∞) lnn*n^(1-p)
=∞
而1/n级数发散,所以 lnn/n^p发散

所以综上
p>1,∑(ln n /n^p)收敛
p<=1,∑(ln n /n^p)发散
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式