2个回答
展开全部
∫(-ln2->0)√(1-e^(2x))dx
let
e^x = siny
e^x dx = cosy dy
dx = (cosy/siny) dy
x=0 , y= π/2
x=-ln2, y =π/6
∫(-ln2->0)√(1-e^(2x))dx
=∫(π/6->π/2) [(cosy)^2/siny] dy
=∫(π/6->π/2) [(1-(siny)^2)/siny] dy
=∫(π/6->π/2) (cscy -siny) dy
=[ln|cscy-coty| +cosy](π/6->π/2)
= - ln(2-√3) - √3/2
let
e^x = siny
e^x dx = cosy dy
dx = (cosy/siny) dy
x=0 , y= π/2
x=-ln2, y =π/6
∫(-ln2->0)√(1-e^(2x))dx
=∫(π/6->π/2) [(cosy)^2/siny] dy
=∫(π/6->π/2) [(1-(siny)^2)/siny] dy
=∫(π/6->π/2) (cscy -siny) dy
=[ln|cscy-coty| +cosy](π/6->π/2)
= - ln(2-√3) - √3/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询