解微分方程y'+ytanx=cosx

 我来答
茹翊神谕者

2022-02-07 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1675万
展开全部

简单计算一下即可,答案如图所示

厉梓维青卿
2020-02-11 · TA获得超过3.7万个赞
知道小有建树答主
回答量:1.2万
采纳率:32%
帮助的人:871万
展开全部
对应齐次方程为y'+ytanx=0
dy/y=-tanxdx
ln|y|=ln|cosx|+ln|c1|
y=c1cosx
用常数变易法,设y=ucosx
dy/dx=u'cosx-usinx
代入所给非齐次方程,得u'=1
u=x+c
所以所求方程的通解为y=(x+c)cosx
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
嬴春淡婷
2019-10-11 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:28%
帮助的人:1001万
展开全部
先求齐次方程y'=-y
tanx
dy/y=-tanx
dx=-sinx/cosx
dx=d(cosx)/cosx
即ln|y|=ln|cosx|+ln|C|
得y=C
cosx
由常数变易法,令y=C(x)
cosx
y'=C'(x)cosx-C(x)sinx
带入原方程得
C'(x)=1
C(x)=x+C
故原方程的通解为y=(x+C)cosx
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式