函数y=|sinx|cosx的最大值是多少,要过程,谢谢。
1个回答
展开全部
在第一象限时,y=sinxcosx=(sin2x)÷2,x∈[0+2kπ,π/2+2kπ],最大值为1/2.
在第二象限时,y=sinxcosx=(sin2x)÷2,x∈[π/2+2kπ,π+2kπ],最大值为0.
在第三象限,y=-sinxcosx=-(sin2x)÷2,x∈[π+2kπ,3π/2+2kπ],最大值0,
在第四象限,y=-sinxcosx=-(sin2x)÷2,x∈[3π/2+2kπ,2π+2kπ],最大值为1/2.
在第二象限时,y=sinxcosx=(sin2x)÷2,x∈[π/2+2kπ,π+2kπ],最大值为0.
在第三象限,y=-sinxcosx=-(sin2x)÷2,x∈[π+2kπ,3π/2+2kπ],最大值0,
在第四象限,y=-sinxcosx=-(sin2x)÷2,x∈[3π/2+2kπ,2π+2kπ],最大值为1/2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询