高一数学,第4或5题求解,谢谢!
展开全部
4.
向量AB*向量AC=1 (1)
向量AB*向量BC=-2 (2)
(1)-(2)
向量AB*(向量AC-向量BC)=AB*AB=3
|AB|=根号3
5.
解:根据正弦定理
由2R[(sinA)²-(sinC)²]=(√2*a- b)*sinB
得到 a²-c²=√2ab-b²
根据余弦定理
cosC=(a²+b²-c²)/2ab=√2/2
故 角C=45度
所以 S=(1/2)absinC=2R²sinAsinBsinC
=√2R²sinAsinB
根据两角正弦积化和的公式
S=√2R²sinAsinB=(√2R²/2)[cos(A-B)-cos(A+B)]
=(√2R²/2)[cos(A-B)+cosC]
=(√2R²/2)[cos(A-B)+√2/2]
≤(√2R²/2)[1+√2/2]=[(√2+1)R²]/2
所以当A=B的时候
三角形ABC的面积的最大值是[(√2+1)R²]/2
向量AB*向量AC=1 (1)
向量AB*向量BC=-2 (2)
(1)-(2)
向量AB*(向量AC-向量BC)=AB*AB=3
|AB|=根号3
5.
解:根据正弦定理
由2R[(sinA)²-(sinC)²]=(√2*a- b)*sinB
得到 a²-c²=√2ab-b²
根据余弦定理
cosC=(a²+b²-c²)/2ab=√2/2
故 角C=45度
所以 S=(1/2)absinC=2R²sinAsinBsinC
=√2R²sinAsinB
根据两角正弦积化和的公式
S=√2R²sinAsinB=(√2R²/2)[cos(A-B)-cos(A+B)]
=(√2R²/2)[cos(A-B)+cosC]
=(√2R²/2)[cos(A-B)+√2/2]
≤(√2R²/2)[1+√2/2]=[(√2+1)R²]/2
所以当A=B的时候
三角形ABC的面积的最大值是[(√2+1)R²]/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询