y=sin(x+y)的隐函数的二阶导数。要详细的过程
2个回答
展开全部
y'=[sin(x+y)]'(x+y)'=(1+y')cos(x+y)=cos(x+y)+y'cos(x+y)
y'=cos(x+y)/[(1-cos(x+y)]
y''=[cos(x+y]'(x+y)'+y''cos(x+y)+y'[cos(x+y)]'
=-(1+y')sin(x+y)+y''cos(x+y)-y'(1+y')sin(x+y)
y''[cos(x+y)-1]=(1+y')^2sin(x+y)
={1+cos(x+y)/[(1-cos(x+y)]}^2sin(x+y)
=sin(x+y)/[cos(x+y)-1]^2
y''=sin(x+y)/[cos(x+y)-1]^3
y'=cos(x+y)/[(1-cos(x+y)]
y''=[cos(x+y]'(x+y)'+y''cos(x+y)+y'[cos(x+y)]'
=-(1+y')sin(x+y)+y''cos(x+y)-y'(1+y')sin(x+y)
y''[cos(x+y)-1]=(1+y')^2sin(x+y)
={1+cos(x+y)/[(1-cos(x+y)]}^2sin(x+y)
=sin(x+y)/[cos(x+y)-1]^2
y''=sin(x+y)/[cos(x+y)-1]^3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询