在三角形ABC中,∠B=60°,BA=24cm,BC=16cm。.
现有动点P从点A出发,沿射线AB向点B方向运动;动点Q从点C出发,沿射线CB也向点B方向运动。如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,求:(1)...
现有动点P从点A出发,沿射线AB向点B方向运动;动点Q从点C出发,沿射线CB也向点B方向运动。如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,求: (1)几秒钟以后,三角形PBQ的面积是三角形ABC的面积的一半? (2)这时,P、Q两点之间的距离是多少?
展开
1个回答
2014-01-03
展开全部
设经过时间t之后,PBQ=0.5*ABC
有三角形面积公式 S=0.5*AB*BC*sinB
因此 当 PB*BQ=0.5*AB*BC时
PBQ=0.5*ABC
即(BA-PA)*(BC-CQ)=0.5*BA*BC
(BA-4*t)*(BC-2*t)=0.5*BA*BC
(24-4*t)*(16-2*t)=0.5*24*16
即t^2-14*t+24=0
(t-2)*(t-12)=0
t=2 或 t=12(删除)
故 t=2
此时 BP=16 BQ=12
PQ^2=BP^2+BQ^2-2*BP*BQ*cos60
PQ=4根号13
有三角形面积公式 S=0.5*AB*BC*sinB
因此 当 PB*BQ=0.5*AB*BC时
PBQ=0.5*ABC
即(BA-PA)*(BC-CQ)=0.5*BA*BC
(BA-4*t)*(BC-2*t)=0.5*BA*BC
(24-4*t)*(16-2*t)=0.5*24*16
即t^2-14*t+24=0
(t-2)*(t-12)=0
t=2 或 t=12(删除)
故 t=2
此时 BP=16 BQ=12
PQ^2=BP^2+BQ^2-2*BP*BQ*cos60
PQ=4根号13
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询