已知伴随矩阵如何求逆矩阵

 我来答
教育小百科达人
推荐于2019-08-11 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:474万
展开全部

矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。

A^*=A^(-1)|A|,

两边同时取行列式得

|A^*|=|A|^2 (因为是三阶矩阵)

又|A^*|=4,|A|>0,所以|A|=2

所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。

特殊求法:

(1)当矩阵是大于等于二阶时 :

主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以  , x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以  ,一直是正数,没必要考虑主对角元素的符号问题。

(2)当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。

(3)二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。

扩展资料:

若|A|≠0,则矩阵A可逆,且

其中,A*为矩阵A的伴随矩阵。

证明:

必要性:当矩阵A可逆,则有AA-1=I 。(其中I是单位矩阵)

两边取行列式,det(AA-1)=det(I)=1。

由行列式的性质:det(AA-1)=det(A)det(A-1)=1

则det(A)≠0,(若等于0则上式等于0)

充分性:有伴随矩阵的定理,有  (其中  是的伴随矩阵。)

当det(A)≠0,等式同除以det(A),变成 

比较逆矩阵的定义式,可知逆矩阵存在且逆矩阵 

轮看殊O
高粉答主

2019-05-01 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:748万
展开全部

矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。

A^*=A^(-1)|A|,

两边同时取行列式得

|A^*|=|A|^2 (因为是三阶矩阵)

又|A^*|=4,|A|>0,所以|A|=2

所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。

扩展资料

性质定理

1.可逆矩阵一定是方阵。

2.如果矩阵A是可逆的,其逆矩阵是唯一的。

3.A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4.可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)

5.若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6.两个可逆矩阵的乘积依然可逆。

7.矩阵可逆当且仅当它是满秩矩阵

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
黄徐升
推荐于2017-09-12 · TA获得超过3664个赞
知道大有可为答主
回答量:2602
采纳率:70%
帮助的人:729万
展开全部
矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可
A^*=A^(-1)|A|,
两边同时取行列式得
|A^*|=|A|^2 (因为是三阶矩阵)
又|A^*|=4,|A|>0,所以|A|=2
所以
A^(-1)=A^(*)/2,就是伴随矩阵除以2
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hjg36043d78ea
推荐于2017-08-05 · TA获得超过3.2万个赞
知道大有可为答主
回答量:1.2万
采纳率:87%
帮助的人:3902万
展开全部
|A*|=4 【本身就是个《下三角》】
|A|=|A*|^(1/(3-1))=2 【公式:|A*|=|A|^(3-1) ,题设:|A|>0】
∴A^(-1)=A*/|A|=[(1/2,0.0)(0,1/2,0)(1/2,0,2)]
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
琦驰轩4c
2019-12-22 · TA获得超过1562个赞
知道小有建树答主
回答量:3071
采纳率:47%
帮助的人:114万
展开全部
矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。 A^*=A^(-1)|A|, 两边同时取行列式得 |A^*|=|A|^2 (因为是三阶矩阵) 又|A^*|=4,|A|>0,所以|A|=2 所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。 特殊求法: (1)...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(11)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式