
若0<x<2 则4/x+9/(2-x) 的最小值为?? 要详解 谢谢
展开全部
4/x+9/(2-x)=2*2/x+9/2*2/(2-x)
=2(2-x+x)/x+9/2(2-x+x)/(2-x)
=2(2-x)/x+1+9/2+9/2x/(2-x)
≥11/2+2√[2(2-x)/x*9/2x/(2-x)]=11/2+6=23/2
=2(2-x+x)/x+9/2(2-x+x)/(2-x)
=2(2-x)/x+1+9/2+9/2x/(2-x)
≥11/2+2√[2(2-x)/x*9/2x/(2-x)]=11/2+6=23/2
追问
可答案是 25/2 是与x的定义域有关吗??
求 详解
谢谢
追答
不好意思,第2步计算错了,是25/2,修正后如下
4/x+9/(2-x)=2*2/x+9/2*2/(2-x)
=2(2-x+x)/x+9/2(2-x+x)/(2-x)
=2(2-x)/x+2+9/2+9/2x/(2-x)
≥13/2+2√[2(2-x)/x*9/2x/(2-x)]=13/2+6=25/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询