如图,抛物线y=ax²+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(根号a,1/16)两点,
点p在该抛物线上运动,以点p为圆心的圆p总经过定点A(0,2)。求a.b.c的值求证:在点p运动的过程中,圆p始终与x轴相交设圆p与x轴想教育M(x1,0),N(X2,0...
点p在该抛物线上运动,以点p为圆心的圆p总经过定点A(0,2)。
求a.b.c的值
求证:在点p运动的过程中,圆p始终与x轴相交
设圆p与x轴想教育M(x1,0),N(X2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心p的纵坐标 展开
求a.b.c的值
求证:在点p运动的过程中,圆p始终与x轴相交
设圆p与x轴想教育M(x1,0),N(X2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心p的纵坐标 展开
1个回答
展开全部
过(0, 0), x = 0, y = c = 0
y = ax² + bx
对称轴为y轴: x = -b/(2a) = 0, b = 0
y = ax²
x = √a, y = a² = 1/16, a = 1/4 (舍去a = -1/4, 此时抛物线不可能在x轴上方)
y = x²/4
P(p, p²/4), 圆P为(x - p)² + (y - p²/4)² = r²
x = 0, y = 2, r² = p² + (2 - p²/4)²
(x - p)² + (y - p²/4)² = p² + (2 - p²/4)²
圆心P与x轴的距离为d = p²/4
r² - d² = p² + (2 - p²/4)² - (p²/4)² = p² + (2 - p²/4 + p²/4)(2 - p²/4 - p²/4)
= p² + 2(2 - p²/2)
= 4 > 0
圆总与x轴相交
圆P 可以变为(x - p)² + y² - p²y/2 = 4
令y = 0, (x - p)² = 4
x = 2 + p或x = -2 + p
M(-2 + p, 0), N(2 + p, 0), A(0, 2)
(i) AM = AN
A须在MN的中垂线上, p = 0, P(0, 0)
(ii) MA= MN
(p - 2 - 0)² + (0 - 2)² = (p + 2 - p + 2)²
p = 2 ±2√3, P(2 ±2√3, 4 ±2√3)
(iii) NA = NM
结果与(ii)相同。
y = ax² + bx
对称轴为y轴: x = -b/(2a) = 0, b = 0
y = ax²
x = √a, y = a² = 1/16, a = 1/4 (舍去a = -1/4, 此时抛物线不可能在x轴上方)
y = x²/4
P(p, p²/4), 圆P为(x - p)² + (y - p²/4)² = r²
x = 0, y = 2, r² = p² + (2 - p²/4)²
(x - p)² + (y - p²/4)² = p² + (2 - p²/4)²
圆心P与x轴的距离为d = p²/4
r² - d² = p² + (2 - p²/4)² - (p²/4)² = p² + (2 - p²/4 + p²/4)(2 - p²/4 - p²/4)
= p² + 2(2 - p²/2)
= 4 > 0
圆总与x轴相交
圆P 可以变为(x - p)² + y² - p²y/2 = 4
令y = 0, (x - p)² = 4
x = 2 + p或x = -2 + p
M(-2 + p, 0), N(2 + p, 0), A(0, 2)
(i) AM = AN
A须在MN的中垂线上, p = 0, P(0, 0)
(ii) MA= MN
(p - 2 - 0)² + (0 - 2)² = (p + 2 - p + 2)²
p = 2 ±2√3, P(2 ±2√3, 4 ±2√3)
(iii) NA = NM
结果与(ii)相同。
追问
请问辅助线是哪条
追答
应当不用辅助线
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询