已知三角形的三边长如何求面积?

 我来答
百度网友9fd5cf7
高粉答主

推荐于2020-08-11 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:286
采纳率:0%
帮助的人:10.3万
展开全部

海伦-秦九韶公式

三边是a,b,c

令p=(a+b+c)/2

则S=√[p(p-a)(p-b)(p-c)]

已知三角形的三边长,求三角形面积,有公式:

(其中为三角形的三边长,为面积,其中).

(1)若已知三角形的三边长分别为2、3、4,试运用公式,计算该三角形的面积

⑵现在我们不用以上的公式计算,而运用初中学过的数学知识计算,你能做到吗?请试试.:如图,△ABC中AB=7,AC=5,BC=8,求△ABC的面积。(提示:作高AD,设

扩展资料

折叠直角三角形

解直角三角形需要用到勾股定理(弦)定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。数学公          式中常写作a^2+b^2=c^2,其中a和b分别为直角三角形两直角边,c为斜边。

勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。

常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等。

其中,互素的勾股数组成为基本勾股数组,例如:3,4,5;5,12,13;8,15,17等等

折叠斜三角形

在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有

(1)正弦定理

a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径)。

(2)余弦定理

a^2=b^2+c^2-2bc*CosA;

^2=a^2+c^2-2ac*CosB;

c^2=a^2+b^2-2ab*CosC。

备注:勾股定理其实是余弦定理的一种特殊情况。

(3)余弦定理变形公式

cosA=(b^2+C^2-a^2)/2bc;

cosb=(a^2+c^2-b^2)/2ac;

cosC=(a^2+b^2-C^2)/2ab。

参考资料:三角形的百度百科

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
v拉菲v
2021-07-02 · TA获得超过138个赞
知道答主
回答量:37
采纳率:100%
帮助的人:1.8万
展开全部

各类三角形求面积方式如下所示:

1.已知三角形底a,高h,则 S=ah/2

2.已知三角形三边a,b,c,则

(海伦公式)(p=(a+b+c)/2)

S=sqrt[p(p-a)(p-b)(p-c)]

=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

3.已知三角形两边a,b,这两边夹角C,则S=1/2

absinC,即两夹边之积乘夹角的正弦值。

4.设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

5.设三角形三边分别为a、b、c,外接圆半径为R

则三角形面积=abc/4R

6.行列式形式

为三阶行列式,此三角形

 

在平面直角坐标系内

 ,这里 

选取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小。

该公式的证明可以借助“两夹边之积乘夹角的正弦值”的面积公式 。

7.海伦——秦九韶三角形中线面积公式:

S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3

其中Ma,Mb,Mc为三角形的中线长.

8.根据三角函数求面积:

S= &frac12;ab sinC=2R&sup2; sinAsinBsinC= a&sup2;sinBsinC/2sinA

注:其中R为外切圆半径。

9.根据向量求面积:

其中,(x1,y1,z1)与(x2,y2,z2)分别为向量AB与AC在空间直角坐标系下的坐标表达,即:

向量临边构成三角形面积等于向量临边构成平行四边形面积的一半。

扩展资料

三角形面积公式是指使用算式计算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形,符号为△。

常见的三角形按边分有等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)、不等腰三角形;按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

资料来源:三角形面积公式_百度百科

已知三角形的三边长分别为a、b、c,根据海伦公式则三角形的面积公式如下图所示,其中公式里的p为半周长:

1、解析过程如下图所示:

2、举例计算过程如下:

扩展资料:

我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”(即海伦公式)。 秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。

三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积.

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
khtaaa
2017-04-12 · TA获得超过33.1万个赞
知道顶级答主
回答量:15.6万
采纳率:81%
帮助的人:3.5亿
展开全部
已知三角形的三边分别是a、b、c,
先算出周长的一半s=1/2(a+b+c)
则该三角形面积S=根号[s(s-a)(s-b)(s-c)]

这个公式叫海伦——秦九昭公式

证明:
设三角形的三边a、b、c的对角分别为A、B、C,
则根据余弦定理c²=a²+b²-2ab·cosC,得

cosC = (a²+b²-c²)/2ab

S=1/2*ab*sinC
=1/2*ab*√(1-cos²C)
=1/2*ab*√[1-(a²+b²-c²)²/4a²b²]
=1/4*√[4a²b²-(a²+b²-c²)²]
=1/4*√[(2ab+a²+b²-c²)(2ab-a²-b²+c²)]
=1/4*√{[(a+b)²-c²][c²-(a-b)²]}
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]

设s=(a+b+c)/2
则s=(a+b+c), s-a=(-a+b+c)/2, s-b=(a-b+c)/2, s-c=(a+b-c)/2,

上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[s(s-a)(s-b)(s-c)]

所以,三角形ABC面积S=√[s(s-a)(s-b)(s-c)]

证明完毕

{*是乘号的意思,√是根号的意思}
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
狭窄视野
2020-06-17
知道答主
回答量:1
采纳率:0%
帮助的人:593
展开全部
已知三角形的三边分别是a、b、c, 先算出周长的一半s=1/2(a+b+c) 则该三角形面积S=根号[s(s-a)(s-b)(s-c)] 这个公式叫海伦——秦九昭公式 证明: 设三角形的三边a、b、c的对角分别为A、B、C, 则根据余弦定理c²=a²+b²-2ab·cosC,得 cosC 全文
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2022-03-30 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25150

向TA提问 私信TA
展开全部

简单计算一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式