求解数列问题

第二问!a1=1,an+1=√an^2-2an+2+bb=-1问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立、... 第二问!
a1=1,an+1=√an^2-2an+2 +b
b=-1问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立、
展开
SNOWHORSE70121
2014-06-09 · TA获得超过1.8万个赞
知道大有可为答主
回答量:4806
采纳率:100%
帮助的人:2646万
展开全部
a(1) = 1, a(n+1) = {[a(n)]^2 - 2a(n) + 2}^(1/2) + b.
(1), b=1,

a(n+1) - 1 = {[a(n)]^2 - 2a(n) + 2}^(1/2) >= 0. a(n)>=1.

[a(n+1)-1]^2 = [a(n)]^2 - 2a(n) + 2 = [a(n)-1]^2 + 1,
{[a(n)-1]^2}是首项为[a(1)-1]^2 = 0, 公差为1的等差数列。

[a(n)-1]^2 = 0 + (n-1),
a(n) - 1 = (n-1)^(1/2),

a(n) = 1 + (n-1)^(1/2).

(2) b = -1.
a(n+1) = {[a(n)]^2 - 2a(n) + 2}^(1/2) - 1 = {[a(n)-1]^2 + 1}^(1/2) - 1 >= 1^(1/2) - 1 = 0.

a(2n+1) = {[a(2n)-1]^2 + 1}^(1/2) - 1,

a(2n+1) - a(2n) = {[a(2n)-1]^2 + 1}^(1/2) - 1 - a(2n)
= {[a(2n)-1]^2 + 1 - [1+a(2n)]^2}/ [{[a(2n)-1]^2 + 1}^(1/2) + 1 + a(2n)]
= [1 -4a(2n)] / [{[a(2n)-1]^2 + 1}^(1/2) + 1 + a(2n)]

当0<=a(2n) < 1/4时,a(2n+1) - a(2n) > 0.
此时,a(2n+1) = {[a(2n)-1]^2 + 1}^(1/2) - 1,

0<=a(2n)<1/4时,[a(2n)-1]^2单调递减。1 >= [a(2n)-1]^2 > 9/16
a(2n+1) > { 9/16 + 1}^(1/2) - 1 = {25/16}^(1/2) - 1 = 5/4 - 1 = 1/4.

而,a(2) = {[a(1)-1]^2 + 1}^(1/2) - 1 = 0, 0<= a(2) < 1/4,满足要求。
所以,存在实数c = 1/4,使得总有,a(2n) < c = 1/4 < a(2n+1).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式