1个回答
展开全部
基本初等函数导数公式主要有以下
y=f(x)=c
(c为常数),则f'(x)=0
f(x)=x^n
(n不等于0)
f'(x)=nx^(n-1)
(x^n表示x的n次方)
f(x)=sinx
f'(x)=cosx
f(x)=cosx
f'(x)=-sinx
f(x)=a^x
f'(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^x
f'(x)=e^x
f(x)=logaX
f'(x)=1/xlna
(a>0且a不等于1,x>0)
f(x)=lnx
f'(x)=1/x
(x>0)
f(x)=tanx
f'(x)=1/cos^2
x
f(x)=cotx
f'(x)=-
1/sin^2
x
导数运算法则如下
(f(x)+/-g(x))'=f'(x)+/-
g'(x)
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2
书上没有吗,不会吧
y=f(x)=c
(c为常数),则f'(x)=0
f(x)=x^n
(n不等于0)
f'(x)=nx^(n-1)
(x^n表示x的n次方)
f(x)=sinx
f'(x)=cosx
f(x)=cosx
f'(x)=-sinx
f(x)=a^x
f'(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^x
f'(x)=e^x
f(x)=logaX
f'(x)=1/xlna
(a>0且a不等于1,x>0)
f(x)=lnx
f'(x)=1/x
(x>0)
f(x)=tanx
f'(x)=1/cos^2
x
f(x)=cotx
f'(x)=-
1/sin^2
x
导数运算法则如下
(f(x)+/-g(x))'=f'(x)+/-
g'(x)
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2
书上没有吗,不会吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询