高数题求解答,要详细过程,谢谢
3个回答
展开全部
利用{a[n]}的单调递减性,有:
a[2^n] + a[2^n+1] + ... + a[2^(n+1) - 1] <= a[2^n] + ... + a[2^n] = 2^n * a[2^n],
所以,求和[n=1,∞] ( a[n] ) <= a[1] + 求和[n=1,∞] ( 2^n * a[n] );
另外,
2^n * a[2^n] = 2 * ( 2^(n-1) * a[2^n] ) = 2 * ( a[2^n] + a[2^n] + ... + a[2^n] )
<= 2 * ( a[2^n] + a[2^n-1] + ... + a[2^(n-1)+1] )
所以,求和[n=1,∞] ( 2^n * a[n] ) <= 2 * 求和[n=1,∞] ( a[n] ) - 2 * a[1];
综上,两个级数是同敛散的。
a[2^n] + a[2^n+1] + ... + a[2^(n+1) - 1] <= a[2^n] + ... + a[2^n] = 2^n * a[2^n],
所以,求和[n=1,∞] ( a[n] ) <= a[1] + 求和[n=1,∞] ( 2^n * a[n] );
另外,
2^n * a[2^n] = 2 * ( 2^(n-1) * a[2^n] ) = 2 * ( a[2^n] + a[2^n] + ... + a[2^n] )
<= 2 * ( a[2^n] + a[2^n-1] + ... + a[2^(n-1)+1] )
所以,求和[n=1,∞] ( 2^n * a[n] ) <= 2 * 求和[n=1,∞] ( a[n] ) - 2 * a[1];
综上,两个级数是同敛散的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询