4个回答
展开全部
根尖分升区
产生的生长素向上作极性运输
解:
生长素是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,英文简称IAA,国际通用,是吲哚乙酸(IAA)。4-氯-IAA、5-羟-IAA、萘乙酸(NAA)、吲哚丁酸等为类生长素。1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究;后来达尔文父子对?草胚芽鞘向光性进行了研究。1928年温特首次分离出这种引起胚芽鞘弯曲的化学信使物质,命名为生长素。1934年,凯格等确定它为吲哚乙酸,因而习惯上常把吲哚乙酸作为生长素的同义词。
生长素在扩展的幼嫩叶片和顶端分生组织中合成,通过韧皮部的长距离运输,自上而下地向基部积累。根部也能生产生长素,自下而上运输。植物体内的生长素是由色氨酸通过一系列中间产物而形成的。其主要途径是通过吲哚乙醛。吲哚乙醛可以由色氨酸先氧化脱氨成为吲哚丙酮酸后脱羧而成,也可以由色氨酸先脱羧成为色胺后氧化脱氨而形成。然后吲哚乙醛再氧化成吲哚乙酸。另一条可能的合成途径是色氨酸通过吲哚乙腈转变为吲哚乙酸。
在植物体内吲哚乙酸可与其它物质结合而失去活性,如与天冬氨酸结合为吲哚乙酰天冬氨酸,与肌醇结合成吲哚乙酸肌醇,与葡萄糖结合成葡萄糖苷,与蛋白质结合成吲哚乙酸-蛋白质络合物等。结合态吲哚乙酸常可占植物体内吲哚乙酸的50~90%,可能是生长素在植物组织中的一种储藏形式,它们经水解可以产生游离吲哚乙酸。
植物组织中普遍存在的吲哚乙酸氧化酶可将吲哚乙酸氧化分解。
生长素有多方面的生理效应,这与其浓度有关。低浓度时可以促进生长,高浓度时则会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。生长素的生理效应表现在两个层次上。
在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。
在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。
近年来提出激素受体的概念。激素受体是一个大分子细胞组分,能与相应的激素特异地结合,尔后发动一系列反应。吲哚乙酸与受体的复合物有两方面的效应:一是作用于膜蛋白,影响介质酸化、离子泵运输和紧张度变化,属于快反应(〈10分钟〉;二是作用于核酸,引起细胞壁变化和蛋白质合成,属于慢反应()10分钟)。介质酸化是细胞生长的重要条件。吲哚乙酸能活化质膜上ATP(腺苷三磷酸)酶,刺激氢离子流出细胞,降低介质pH值,于是有关的酶被活化,水解细胞壁的多糖,使细胞壁软化而细胞得以扩伸。
施用吲哚乙酸后导致特定信使核糖核酸(mRNA)序列的出现,从而改变了蛋白质的合成。吲哚乙酸处理还改变了细胞壁的弹性,使细胞生长得以进行。
生长素对生长的促进作用主要是促进细胞的生长,特别是细胞的伸长,对细胞分裂没有影响。植物感受光刺激的部位是在茎的尖端,但弯曲的部位是在尖端的下面一段,这是因为尖端的下面一段细胞正在生长伸长,是对生长素最敏感的时期,所以生长素对其生长的影响最大。趋于衰老的组织生长素是不起作用的。生长素能够促进果实的发育和扦插的枝条生根的原因是:生长素能够改变植物体内的营养物质分配,在生长素分布较丰富的部分,得到的营养物质就多,形成分配中心。生长素能够诱导无籽番茄的形成就是因为用生长素处理没有受粉的番茄花蕾后,番茄花蕾的子房就成了营养物质的分配中心,叶片进行光合作用制造的养料就源源不断地运到子房中,子房就发育了。
植物生长素生理作用的两重性:
较低浓度促进生长,较高浓度抑制生长。植物不同的器官对生长素最适浓度的要求是不同的。根的最适浓度约为10E-10mol/L,芽的最适浓度约为10E-8mol/L,茎的最浓度约为10E-5mol/L。在生产上常常用生长素的类似物(如萘乙酸、2,4-D等)来调节植物的生长如生产豆芽菜时就是用适宜茎生长的浓度来处理豆芽,结果根和芽都受到抑制,而下胚轴发育成的茎很发达。植物茎生长的顶端优势是由植物对生长素的运输特点和生长素生理作用的两重性两个因素决定的,植物茎的顶芽是产生生长素最活跃的部位,但顶芽处产生的生长素浓度通过主动运输而不断地运到茎中,所以顶芽本身的生长素浓度是不高的,而在幼茎中的浓度则较高,最适宜于茎的生长,对芽却有抑制作用。越靠近顶芽的位置生长素浓度越高,对侧芽的抑制作用就越强,这就是许多高大植物的树形成宝塔形
产生的生长素向上作极性运输
解:
生长素是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,英文简称IAA,国际通用,是吲哚乙酸(IAA)。4-氯-IAA、5-羟-IAA、萘乙酸(NAA)、吲哚丁酸等为类生长素。1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究;后来达尔文父子对?草胚芽鞘向光性进行了研究。1928年温特首次分离出这种引起胚芽鞘弯曲的化学信使物质,命名为生长素。1934年,凯格等确定它为吲哚乙酸,因而习惯上常把吲哚乙酸作为生长素的同义词。
生长素在扩展的幼嫩叶片和顶端分生组织中合成,通过韧皮部的长距离运输,自上而下地向基部积累。根部也能生产生长素,自下而上运输。植物体内的生长素是由色氨酸通过一系列中间产物而形成的。其主要途径是通过吲哚乙醛。吲哚乙醛可以由色氨酸先氧化脱氨成为吲哚丙酮酸后脱羧而成,也可以由色氨酸先脱羧成为色胺后氧化脱氨而形成。然后吲哚乙醛再氧化成吲哚乙酸。另一条可能的合成途径是色氨酸通过吲哚乙腈转变为吲哚乙酸。
在植物体内吲哚乙酸可与其它物质结合而失去活性,如与天冬氨酸结合为吲哚乙酰天冬氨酸,与肌醇结合成吲哚乙酸肌醇,与葡萄糖结合成葡萄糖苷,与蛋白质结合成吲哚乙酸-蛋白质络合物等。结合态吲哚乙酸常可占植物体内吲哚乙酸的50~90%,可能是生长素在植物组织中的一种储藏形式,它们经水解可以产生游离吲哚乙酸。
植物组织中普遍存在的吲哚乙酸氧化酶可将吲哚乙酸氧化分解。
生长素有多方面的生理效应,这与其浓度有关。低浓度时可以促进生长,高浓度时则会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。生长素的生理效应表现在两个层次上。
在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。
在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。
近年来提出激素受体的概念。激素受体是一个大分子细胞组分,能与相应的激素特异地结合,尔后发动一系列反应。吲哚乙酸与受体的复合物有两方面的效应:一是作用于膜蛋白,影响介质酸化、离子泵运输和紧张度变化,属于快反应(〈10分钟〉;二是作用于核酸,引起细胞壁变化和蛋白质合成,属于慢反应()10分钟)。介质酸化是细胞生长的重要条件。吲哚乙酸能活化质膜上ATP(腺苷三磷酸)酶,刺激氢离子流出细胞,降低介质pH值,于是有关的酶被活化,水解细胞壁的多糖,使细胞壁软化而细胞得以扩伸。
施用吲哚乙酸后导致特定信使核糖核酸(mRNA)序列的出现,从而改变了蛋白质的合成。吲哚乙酸处理还改变了细胞壁的弹性,使细胞生长得以进行。
生长素对生长的促进作用主要是促进细胞的生长,特别是细胞的伸长,对细胞分裂没有影响。植物感受光刺激的部位是在茎的尖端,但弯曲的部位是在尖端的下面一段,这是因为尖端的下面一段细胞正在生长伸长,是对生长素最敏感的时期,所以生长素对其生长的影响最大。趋于衰老的组织生长素是不起作用的。生长素能够促进果实的发育和扦插的枝条生根的原因是:生长素能够改变植物体内的营养物质分配,在生长素分布较丰富的部分,得到的营养物质就多,形成分配中心。生长素能够诱导无籽番茄的形成就是因为用生长素处理没有受粉的番茄花蕾后,番茄花蕾的子房就成了营养物质的分配中心,叶片进行光合作用制造的养料就源源不断地运到子房中,子房就发育了。
植物生长素生理作用的两重性:
较低浓度促进生长,较高浓度抑制生长。植物不同的器官对生长素最适浓度的要求是不同的。根的最适浓度约为10E-10mol/L,芽的最适浓度约为10E-8mol/L,茎的最浓度约为10E-5mol/L。在生产上常常用生长素的类似物(如萘乙酸、2,4-D等)来调节植物的生长如生产豆芽菜时就是用适宜茎生长的浓度来处理豆芽,结果根和芽都受到抑制,而下胚轴发育成的茎很发达。植物茎生长的顶端优势是由植物对生长素的运输特点和生长素生理作用的两重性两个因素决定的,植物茎的顶芽是产生生长素最活跃的部位,但顶芽处产生的生长素浓度通过主动运输而不断地运到茎中,所以顶芽本身的生长素浓度是不高的,而在幼茎中的浓度则较高,最适宜于茎的生长,对芽却有抑制作用。越靠近顶芽的位置生长素浓度越高,对侧芽的抑制作用就越强,这就是许多高大植物的树形成宝塔形
麦吉丽生物科技有限公司_
2024-06-26 广告
2024-06-26 广告
护发素对非油性发质作用良好,对脆弱易落、易断的受损发质效果更佳。护发素主要作用就是防止静电发生,不让头发乱七八糟;暂时填补受损头发的空隙,让头发顺滑;以及在头发表面形成保护膜,防止物理摩擦造成的头发进一步损伤。最近种草了麦吉丽家强韧赋活护发...
点击进入详情页
本回答由麦吉丽生物科技有限公司_提供
展开全部
生长素是第一个被发现的植物激素。生长素中最重要的化学物质为3-吲哚乙酸。生长素有调节茎的生长速率、抑制侧芽、促进生根等作用,在农业上用以促进插枝生根,
研究历史生理作用应用领域生长素类似物
简介
生长素即吲哚乙酸,分子式为C10H9NO2,是最早发现的促进植物生长的激素。英文来源于希腊文auxein(生长)。[1]吲哚乙酸的纯品为白色结晶,难溶于水。易溶于乙醇、乙醚等有机溶剂。在光下易被氧化而变为玫瑰红色,生理活性也降低。植物体内的吲哚乙酸有呈自由状态的,也有呈结合(被束缚)状态的。后者多是酯的或肽的复合物。植物体内自由态吲哚乙酸的含量很低,每千克鲜重约为1-100微克,因存在部位及组织种类而异,生长旺盛的组织或器官如生长点、花粉中的含量较多。
从色氨酸开始,其途径有5个。植物生长素存在于西葫芦中,存在于某些十字花科植物中,存在于番茄中。生长素的降解,最明显的是在光下很容易发生光氧化而被破坏。汤玉玮和J.邦纳于1947年发现植物组织中有些氧化酶能降解吲哚乙酸,称为吲哚乙酸氧化酶。
产生部位
生长素在植物体内分布很广,几乎各部位都有,但不是均匀分布的,在某一时间,某一特定部位的含量是受几方面的因素影响的。大多集中在生长旺盛的部分(胚芽鞘、芽和根尖的分生组织、形成层、受精后的子房、幼嫩种子等),而趋向衰老的组织和器官中则甚少。
运输
极性运输 (Polar Transport)
生长素主要是在植物的顶端分生组织中合成的,然后被运输到植物体的各个部分。生长素在植物体内的运输是单方向的,只能从植物体形态学上端向形态学下端运输,在有单一方向的刺激(单侧光照)时生长素向背光一侧运输,其运输方式为主动运输(需要载体和ATP)。
非极性运输(Non polar transport)
在成熟组织中,生长素可以通过韧皮部进行非极性运输。
研究历史生理作用应用领域生长素类似物
简介
生长素即吲哚乙酸,分子式为C10H9NO2,是最早发现的促进植物生长的激素。英文来源于希腊文auxein(生长)。[1]吲哚乙酸的纯品为白色结晶,难溶于水。易溶于乙醇、乙醚等有机溶剂。在光下易被氧化而变为玫瑰红色,生理活性也降低。植物体内的吲哚乙酸有呈自由状态的,也有呈结合(被束缚)状态的。后者多是酯的或肽的复合物。植物体内自由态吲哚乙酸的含量很低,每千克鲜重约为1-100微克,因存在部位及组织种类而异,生长旺盛的组织或器官如生长点、花粉中的含量较多。
从色氨酸开始,其途径有5个。植物生长素存在于西葫芦中,存在于某些十字花科植物中,存在于番茄中。生长素的降解,最明显的是在光下很容易发生光氧化而被破坏。汤玉玮和J.邦纳于1947年发现植物组织中有些氧化酶能降解吲哚乙酸,称为吲哚乙酸氧化酶。
产生部位
生长素在植物体内分布很广,几乎各部位都有,但不是均匀分布的,在某一时间,某一特定部位的含量是受几方面的因素影响的。大多集中在生长旺盛的部分(胚芽鞘、芽和根尖的分生组织、形成层、受精后的子房、幼嫩种子等),而趋向衰老的组织和器官中则甚少。
运输
极性运输 (Polar Transport)
生长素主要是在植物的顶端分生组织中合成的,然后被运输到植物体的各个部分。生长素在植物体内的运输是单方向的,只能从植物体形态学上端向形态学下端运输,在有单一方向的刺激(单侧光照)时生长素向背光一侧运输,其运输方式为主动运输(需要载体和ATP)。
非极性运输(Non polar transport)
在成熟组织中,生长素可以通过韧皮部进行非极性运输。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
生长素(auxin)是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素。 英文简称IAA,国际通用,是吲哚乙酸(IAA)。4-氯-IAA、5-羟-IAA、萘乙酸(NAA)、吲哚丁酸等为类生长素。 1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究[1];后来达尔文父子对草的胚芽鞘向光性进行了研究。植物生长调节剂属于农药类。虽然它们的毒性一般是低毒或微毒,但是在使用中仍然要严格遵守安全操作规程,保证人、畜的安全。
生长素即吲哚乙酸,分子式为C 10H 9NO 2,是最早发现的促进植物生长的激素。英文来源于希腊文auxein(生长)。[2]吲哚乙酸的纯品为白色结晶,难溶于水。易溶于乙醇、 乙醚等有机溶剂。在光下易被氧化而变为玫瑰红色,生理活性也降低。植物体内的吲哚乙酸有呈自由状态的,也有呈结合(被束缚)状态的。后者多是酯的或肽的复合物。植物体内自由态吲哚乙酸的含量很低,每千克 鲜重约为1-100微克,因存在部位及组织种类而异,生长旺盛的组织或器官如生长点、花粉中的含量较多。
从色氨酸开始,其途径有5个。植物生长素存在于西葫芦中,存在于某些十字花科植物中,存在于番茄中。生长素的降解,最明显的是在光下很容易发生光氧化而被破坏。 汤玉玮和J.邦纳于1947年发现植物组织中有些氧化酶能降解 吲哚乙酸,称为 吲哚乙酸氧化酶。
生长素最明显的作用是促进生长,但对茎、芽、根生长的促进作用因浓度而异。三者的最适浓度是茎>芽>根,大约分别为每升10E-5 摩尔、10E-8摩尔、10E-10摩尔。植物体内 吲哚乙酸的运转方向表现明显的极性,主要是由上而下。植物生长中抑制腋芽生长的顶端优势,与吲哚乙酸的极性运输及分布有密切关系。生长素还有促进 愈伤组织形成和诱导生根的作用。
生长素的作用是多部位的,主要参与 细胞壁的形成和核酸代谢。用放射性 氨基酸饲喂离体组织的实验,证明生长素促进生长的同时也促进蛋白质的 生物合成。生长素促进RNA的生物合成尤为显著,因此增加了RNA/DNA及RNA/蛋白质的比率。在各种RNA中合成受促进最多的是rRNA。在对细胞壁的作用上,生长素活化氢离子泵,降低质膜外的pH值,还大大提高细胞壁的弹性和可塑性,从而使细胞壁变松,并提高吸水力。鉴于生长素影响 原生质流动的时间 阈值是2分钟,引起胚芽鞘伸长的是15分钟,时间极短,故认为其作用不会是通过影响 基因调控,可能是通过影响蛋白质(特别是 细胞壁或质
生长素即吲哚乙酸,分子式为C 10H 9NO 2,是最早发现的促进植物生长的激素。英文来源于希腊文auxein(生长)。[2]吲哚乙酸的纯品为白色结晶,难溶于水。易溶于乙醇、 乙醚等有机溶剂。在光下易被氧化而变为玫瑰红色,生理活性也降低。植物体内的吲哚乙酸有呈自由状态的,也有呈结合(被束缚)状态的。后者多是酯的或肽的复合物。植物体内自由态吲哚乙酸的含量很低,每千克 鲜重约为1-100微克,因存在部位及组织种类而异,生长旺盛的组织或器官如生长点、花粉中的含量较多。
从色氨酸开始,其途径有5个。植物生长素存在于西葫芦中,存在于某些十字花科植物中,存在于番茄中。生长素的降解,最明显的是在光下很容易发生光氧化而被破坏。 汤玉玮和J.邦纳于1947年发现植物组织中有些氧化酶能降解 吲哚乙酸,称为 吲哚乙酸氧化酶。
生长素最明显的作用是促进生长,但对茎、芽、根生长的促进作用因浓度而异。三者的最适浓度是茎>芽>根,大约分别为每升10E-5 摩尔、10E-8摩尔、10E-10摩尔。植物体内 吲哚乙酸的运转方向表现明显的极性,主要是由上而下。植物生长中抑制腋芽生长的顶端优势,与吲哚乙酸的极性运输及分布有密切关系。生长素还有促进 愈伤组织形成和诱导生根的作用。
生长素的作用是多部位的,主要参与 细胞壁的形成和核酸代谢。用放射性 氨基酸饲喂离体组织的实验,证明生长素促进生长的同时也促进蛋白质的 生物合成。生长素促进RNA的生物合成尤为显著,因此增加了RNA/DNA及RNA/蛋白质的比率。在各种RNA中合成受促进最多的是rRNA。在对细胞壁的作用上,生长素活化氢离子泵,降低质膜外的pH值,还大大提高细胞壁的弹性和可塑性,从而使细胞壁变松,并提高吸水力。鉴于生长素影响 原生质流动的时间 阈值是2分钟,引起胚芽鞘伸长的是15分钟,时间极短,故认为其作用不会是通过影响 基因调控,可能是通过影响蛋白质(特别是 细胞壁或质
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
生长素对不同器官的作用
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询