![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
证明:如果R是对称的,则R的传递闭包也是对称的
1个回答
展开全部
设C是R的传递闭包,任取(x,y)∈C.
若(x,y)∈R,则(y,x)∈R,从而(y,x)∈C;
若(x,y)\∈R,则存在t,使得(x,t)∈R并且(t,y)∈R,根据R的对称性,有(t,x)∈R并且(y,t)∈R,即(y,x)∈C
综上,对任意的(x,y)∈C皆有(y,x)∈C,所以C是对称的.
若(x,y)∈R,则(y,x)∈R,从而(y,x)∈C;
若(x,y)\∈R,则存在t,使得(x,t)∈R并且(t,y)∈R,根据R的对称性,有(t,x)∈R并且(y,t)∈R,即(y,x)∈C
综上,对任意的(x,y)∈C皆有(y,x)∈C,所以C是对称的.
![](https://ecmc.bdimg.com/public03/b4cb859ca634443212c22993b0c87088.png)
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询