1个回答
展开全部
假设x不等于y.
hahn-banach定理告诉我们,赋范线性空间中有足够多的连续线性泛函能够区分不同的点。然而根据弱极限的定义,X上任意的连续线性泛函f, 都有f(x)=f(y). 矛盾了.
具体的说:
令z=x-y,则z不等于0.
由hahn-banach定理, 存在f属于X*使得
f(z)=||z|| 且 ||f||=1
所以f(z)不等于0.
然而, 根据弱极限的定义,对X上的任意连续线性泛函f, 都有f(x)=f(y). 即f(z)=f(x-y)=0(由f的线性性质), 矛盾.
hahn-banach定理告诉我们,赋范线性空间中有足够多的连续线性泛函能够区分不同的点。然而根据弱极限的定义,X上任意的连续线性泛函f, 都有f(x)=f(y). 矛盾了.
具体的说:
令z=x-y,则z不等于0.
由hahn-banach定理, 存在f属于X*使得
f(z)=||z|| 且 ||f||=1
所以f(z)不等于0.
然而, 根据弱极限的定义,对X上的任意连续线性泛函f, 都有f(x)=f(y). 即f(z)=f(x-y)=0(由f的线性性质), 矛盾.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询