已知函数f(x)=(x^2+2x+a)/x,x∈【1,正无穷)。a=1/2,函数最小值为多少?
已知函数f(x)=(x^2+2x+a)/x,x∈【1,正无穷)。a=1/2,函数最小值为多少?,若对任意x属于[1,正无穷大),f(x)>0恒成立,试求实数a的取值范围?...
已知函数f(x)=(x^2+2x+a)/x,x∈【1,正无穷)。a=1/2,函数最小值为多少?
,若对任意x属于[1,正无穷大),f(x)>0恒成立,试求实数a的取值范围? 展开
,若对任意x属于[1,正无穷大),f(x)>0恒成立,试求实数a的取值范围? 展开
展开全部
(1)f(x)=(x^2+2x+a)/x
= x+1/2x+2
≥2根(x乘1/2x)+2 (这部用的均值不等式)
≥根2+2
当且仅当 x=1/2x时即x=根2/2成立,因为x属于[1,正无穷大),所以舍去。
所以最小值=f(1)=7/2
(2)分类讨论
a=0时,f(x)=(x^2+2x)/x。因为x属于[1,正无穷大),所以f(x)>0恒成立。∴a=0成立
a>0时,f(x)=(x^2+2x+a)/x>0。因为x属于[1,正无穷大),所以x^2+2x+a>0。
所以△=b^2-4ac=4-4a<0,∴a>1
a<0时,f(x)=(x^2+2x+a)/x>0。因为x属于[1,正无穷大),所以x^2+2x-a>0
所以△=b^2-4ac=4+4a<0,∴a<-1
综上所述:a取值为(负无穷,-1){0}(1,正无穷)
= x+1/2x+2
≥2根(x乘1/2x)+2 (这部用的均值不等式)
≥根2+2
当且仅当 x=1/2x时即x=根2/2成立,因为x属于[1,正无穷大),所以舍去。
所以最小值=f(1)=7/2
(2)分类讨论
a=0时,f(x)=(x^2+2x)/x。因为x属于[1,正无穷大),所以f(x)>0恒成立。∴a=0成立
a>0时,f(x)=(x^2+2x+a)/x>0。因为x属于[1,正无穷大),所以x^2+2x+a>0。
所以△=b^2-4ac=4-4a<0,∴a>1
a<0时,f(x)=(x^2+2x+a)/x>0。因为x属于[1,正无穷大),所以x^2+2x-a>0
所以△=b^2-4ac=4+4a<0,∴a<-1
综上所述:a取值为(负无穷,-1){0}(1,正无穷)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=(x^2+2x+a)/x x>0
可化为x^2+2x+a>0 设h(x)=x^2+2x+a
h'(x)=2x+2>0在[1,正无穷大)上恒成立
即令h(1)=3+a>0即可
a>-3
可化为x^2+2x+a>0 设h(x)=x^2+2x+a
h'(x)=2x+2>0在[1,正无穷大)上恒成立
即令h(1)=3+a>0即可
a>-3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询