3个回答
展开全部
先化简:
(x³+1)/[x²(x-1)]
=x³/[x²(x-1)] + 1/[x²(x-1)]
=[x/(x-1)] + [A/x² + B/x + C/(x-1)]
=[1 + 1/(x-1)] + [A(x-1) + B * x * (x-1) + C * x²]/[x²(x-1)]
=[1 + 1/(x-1)] + [Ax - A + Bx² - Bx + Cx²]/[x²(x-1)]
=[1+1/(x-1)] + [(B+C)x² + (A-B)x - A]/[x²(x-1)]
可见,-A = 1, A-B = 0, B+C=0
所以,A= -1, B = -1, C = 1
那么,化简后的结果为:
= 1 + 1/(x-1) - 1/x² - 1/x + 1/(x-1)
= 1 + 2/(x-1) - 1/x - 1/x²
所以,这个积分等于:
= ∫dx + 2∫dx/(x-1) - ∫dx/x - ∫dx/x²
= x + 2ln(x-1) - ln(x) + 1/x + C
(x³+1)/[x²(x-1)]
=x³/[x²(x-1)] + 1/[x²(x-1)]
=[x/(x-1)] + [A/x² + B/x + C/(x-1)]
=[1 + 1/(x-1)] + [A(x-1) + B * x * (x-1) + C * x²]/[x²(x-1)]
=[1 + 1/(x-1)] + [Ax - A + Bx² - Bx + Cx²]/[x²(x-1)]
=[1+1/(x-1)] + [(B+C)x² + (A-B)x - A]/[x²(x-1)]
可见,-A = 1, A-B = 0, B+C=0
所以,A= -1, B = -1, C = 1
那么,化简后的结果为:
= 1 + 1/(x-1) - 1/x² - 1/x + 1/(x-1)
= 1 + 2/(x-1) - 1/x - 1/x²
所以,这个积分等于:
= ∫dx + 2∫dx/(x-1) - ∫dx/x - ∫dx/x²
= x + 2ln(x-1) - ln(x) + 1/x + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询