设a1,a2,a3是三维空间R^3的一组基,则有基a1,1/2a2,1/3a3到基a1-a2,a2+a3,a3+a1的过渡矩阵为

 我来答
  • 你的回答被采纳后将获得:
  • 系统奖励15(财富值+成长值)+难题奖励10(财富值+成长值)+提问者悬赏20(财富值+成长值)
lry31383
高粉答主

2014-08-25 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
(a1,1/2a2,1/3a3)=(a1,a2,a3)P1
P1=
1 0 0
0 1/2 0
0 0 1/3
(a1-a2,a2+a3,a3+a1)=(a1,a2,a3)P2
P2=
1 0 1
-1 1 0
0 1 1
所以
(a1-a2,a2+a3,a3+a1)=(a1,a2,a3)P2 = (a1,1/2a2,1/3a3)P1^-1P2
过渡矩阵为
P1^-1P2=
1 0 1
-2 2 0
0 3 3
来自:求助得到的回答
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式