如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是AB^上异于A、B的动点
如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是AB^上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且D...
如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是AB^上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE
(1)求证:四边形OGCH是平行四边形;
(2)当点C在AB上运动时,在CD,CG,DG中,是否存在长度不变的线段?若存在,请求出该线段的长度
(3)求证:CD^2+3CH^2的定值 展开
(1)求证:四边形OGCH是平行四边形;
(2)当点C在AB上运动时,在CD,CG,DG中,是否存在长度不变的线段?若存在,请求出该线段的长度
(3)求证:CD^2+3CH^2的定值 展开
3个回答
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
展开全部
解:存在,dg不变
∵扇形aob的半径为3
∴oc=3
∵cd⊥oa,ce⊥ob
∴∠ced=∠cdo=90°
又∵∠aob=90°
∴四边形ecdo是矩形
∴de=co=3
∵dg=gh=eh
∴dg=1/3de=1
答:该线段的长度为1。
∵扇形aob的半径为3
∴oc=3
∵cd⊥oa,ce⊥ob
∴∠ced=∠cdo=90°
又∵∠aob=90°
∴四边形ecdo是矩形
∴de=co=3
∵dg=gh=eh
∴dg=1/3de=1
答:该线段的长度为1。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第二问DG=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询