微分中值定理的题目设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f...

微分中值定理的题目设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:(1)存在η∈(1/2,1),使f(η)=η... 微分中值定理的题目 设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:(1)存在η∈(1/2,1),使f(η)=η; (2)对任意实数λ,必存在ξ∈(0,η),使得f'(ξ)-λ[f(ξ)-ξ]1 第二问最后少打了等号,应该是f'(ξ)-λ[f(ξ)-ξ]=1 展开
 我来答
焦尚受惜筠
2020-04-16 · TA获得超过3816个赞
知道大有可为答主
回答量:3127
采纳率:31%
帮助的人:164万
展开全部
(1)证明:
介值定理知,至少存在一点ζ∈(0,1/2),使f(ξ)=1/2
再由介值定理知,至少存在一点η∈(ζ,1),即存在η∈(1/2,1),使f(η)=η
(2)
证明:
构造函数F(x)=e^(-λx)[f(x)-x]
则F(x)在区间[0,1]上连续,在(0,1)内可导
F(η)=0,F(0)=0
∴由罗尔定理知,必存在ξ∈(0,η),使
F'(ξ)=0
即-λe^(-λξ)[f(ξ)-ξ]+e^(-λξ)[f'(ξ)-1]=0
∴f'(ξ)-λ[f(ξ)-ξ]=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式