正交变换的矩阵是唯一的吗
2个回答
展开全部
正交变换不唯一。
但正交变换所得的标准型是唯一的,只要求出来的正交阵C满足C^TAC=C^-1AC=B(B是以A的特征值为主对角线的对角阵)就行。但要注意特征值的排列顺序和正交矩阵中对应的特征向量的排列顺序必须一致。
二次型考察的是矩阵的变形,标准化的过程也是求相应矩阵的特征值和特征向量,对向量正交单位化的过程。重要的还有一个惯性定理,无论是通过配方法还是正交变换法得到的标准型正负惯性指数,即正系数个数和负系数个数都相同。
扩展资料:
所谓正交是指【X ,Y】=0 其中X,Y均为向量;而正交矩阵是指:矩阵A具有如A^tA=E(其中E为单位矩阵)性质,则称A为正交矩阵。所以矩阵的正交变换既是指:若P为正交矩阵,则线性变换y=Px称为正交变换。
欧几里得空间内正交变换的定义:设V为欧式空间,σ是V上的线性变换,若对于任何α∈V,都有▏σ(α)▏=▏α ▏,则称σ是V上的正交变换。
参考资料来源:百度百科-正交变换
上海华然企业咨询
2024-10-30 广告
2024-10-30 广告
在上海华然企业咨询有限公司,我们深刻理解大模型测试对于确保数据准确性、提升业务效率及优化用户体验的重要性。我们的测试团队专注于对大模型进行全面而细致的评估,涵盖性能稳定性、预测准确性、响应速度及兼容性等多个维度。通过模拟真实业务场景,我们力...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询