正交变换的矩阵是唯一的吗
2个回答
展开全部
正交变换不唯一。
但正交变换所得的标准型是唯一的,只要求出来的正交阵C满足C^TAC=C^-1AC=B(B是以A的特征值为主对角线的对角阵)就行。但要注意特征值的排列顺序和正交矩阵中对应的特征向量的排列顺序必须一致。
二次型考察的是矩阵的变形,标准化的过程也是求相应矩阵的特征值和特征向量,对向量正交单位化的过程。重要的还有一个惯性定理,无论是通过配方法还是正交变换法得到的标准型正负惯性指数,即正系数个数和负系数个数都相同。
扩展资料:
所谓正交是指【X ,Y】=0 其中X,Y均为向量;而正交矩阵是指:矩阵A具有如A^tA=E(其中E为单位矩阵)性质,则称A为正交矩阵。所以矩阵的正交变换既是指:若P为正交矩阵,则线性变换y=Px称为正交变换。
欧几里得空间内正交变换的定义:设V为欧式空间,σ是V上的线性变换,若对于任何α∈V,都有▏σ(α)▏=▏α ▏,则称σ是V上的正交变换。
参考资料来源:百度百科-正交变换
道姆光学科技(上海)有限公司
2020-06-16 广告
2020-06-16 广告
应该说是:实对称阵属于不同特征值的的特征向量是正交的。设Ap=mp,Aq=nq,其中A是实对称矩阵,m,n为其不同的特征值,p,q分别为其对应得特征向量.则p1(Aq)=p1(nq)=np1q(p1A)q=(p1A1)q=(AP)1q=(m...
点击进入详情页
本回答由道姆光学科技(上海)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询